|   | 
Details
   web
Records
Author Daniel Hernandez; Antonio Espinosa; David Vazquez; Antonio Lopez; Juan Carlos Moure
Title Embedded Real-time Stixel Computation Type Conference Article
Year 2017 Publication (down) GPU Technology Conference Abbreviated Journal
Volume Issue Pages
Keywords GPU; CUDA; Stixels; Autonomous Driving
Abstract
Address Silicon Valley; USA; May 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference GTC
Notes ADAS; 600.118 Approved no
Call Number ADAS @ adas @ HEV2017a Serial 2879
Permanent link to this record
 

 
Author Jose Luis Gomez
Title Synth-to-real semi-supervised learning for visual tasks Type Book Whole
Year 2023 Publication (down) Going beyond Classification Problems for the Continual Learning of Deep Neural Networks Abbreviated Journal
Volume Issue Pages
Keywords
Abstract The curse of data labeling is a costly bottleneck in supervised deep learning, where large amounts of labeled data are needed to train intelligent systems. In onboard perception for autonomous driving, this cost corresponds to the labeling of raw data from sensors such as cameras, LiDARs, RADARs, etc. Therefore, synthetic data with automatically generated ground truth (labels) has aroused as a reliable alternative for training onboard perception models.
However, synthetic data commonly suffers from synth-to-real domain shift, i.e., models trained on the synthetic domain do not show their achievable accuracy when performing in the real world. This shift needs to be addressed by techniques falling in the realm of domain adaptation (DA).
The semi-supervised learning (SSL) paradigm can be followed to address DA. In this case, a model is trained using source data with labels (here synthetic) and leverages minimal knowledge from target data (here the real world) to generate pseudo-labels. These pseudo-labels help the training process to reduce the gap between the source and the target domains. In general, we can assume accessing both, pseudo-labels and a few amounts of human-provided labels for the target-domain data. However, the most interesting and challenging setting consists in assuming that we do not have human-provided labels at all. This setting is known as unsupervised domain adaptation (UDA). This PhD focuses on applying SSL to the UDA setting, for onboard visual tasks related to autonomous driving. We start by addressing the synth-to-real UDA problem on onboard vision-based object detection (pedestrians and cars), a critical task for autonomous driving and driving assistance. In particular, we propose to apply an SSL technique known as co-training, which we adapt to work with deep models that process a multi-modal input. The multi-modality consists of the visual appearance of the images (RGB) and their monocular depth estimation. The synthetic data we use as the source domain contains both, object bounding boxes and depth information. This prior knowledge is the
starting point for the co-training technique, which iteratively labels unlabeled real-world data and uses such pseudolabels (here bounding boxes with an assigned object class) to progressively improve the labeling results. Along this
process, two models collaborate to automatically label the images, in a way that one model compensates for the errors of the other, so avoiding error drift. While this automatic labeling process is done offline, the resulting pseudolabels can be used to train object detection models that must perform in real-time onboard a vehicle. We show that multi-modal co-training improves the labeling results compared to single-modal co-training, remaining competitive compared to human labeling.
Given the success of co-training in the context of object detection, we have also adapted this technique to a more crucial and challenging visual task, namely, onboard semantic segmentation. In fact, providing labels for a single image
can take from 30 to 90 minutes for a human labeler, depending on the content of the image. Thus, developing automatic labeling techniques for this visual task is of great interest to the automotive industry. In particular, the new co-training framework addresses synth-to-real UDA by an initial stage of self-training. Intermediate models arising from this stage are used to start the co-training procedure, for which we have elaborated an accurate collaboration policy between the two models performing the automatic labeling. Moreover, our co-training seamlessly leverages datasets from different synthetic domains. In addition, the co-training procedure is agnostic to the loss function used to train the semantic segmentation models which perform the automatic labeling. We achieve state-of-the-art results on publicly available benchmark datasets, again, remaining competitive compared to human labeling.
Finally, on the ground of our previous experience, we have designed and implemented a new SSL technique for UDA in the context of visual semantic segmentation. In this case, we mimic the labeling methodology followed by human labelers. In particular, rather than labeling full images at a time, categories of semantic classes are defined and only those are labeled in a labeling pass. In fact, different human labelers can become specialists in labeling different categories. Afterward, these per-category-labeled layers are combined to provide fully labeled images. Our technique is inspired by this methodology since we perform synth-to-real UDA per category, using the self-training stage previously developed as part of our co-training framework. The pseudo-labels obtained for each category are finally
fused to obtain fully automatically labeled images. In this context, we have also contributed to the development of a new photo-realistic synthetic dataset based on path-tracing rendering. Our new SSL technique seamlessly leverages publicly available synthetic datasets as well as this new one to obtain state-of-the-art results on synth-to-real UDA for semantic segmentation. We show that the new dataset allows us to reach better labeling accuracy than previously existing datasets, at the same time that it complements well them when combined. Moreover, we also show that the new human-inspired SSL technique outperforms co-training.
Address
Corporate Author Thesis Ph.D. thesis
Publisher IMPRIMA Place of Publication Editor Antonio Lopez
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ADAS Approved no
Call Number Admin @ si @ Gom2023 Serial 3961
Permanent link to this record
 

 
Author Maryam Asadi-Aghbolaghi; Albert Clapes; Marco Bellantonio; Hugo Jair Escalante; Victor Ponce; Xavier Baro; Isabelle Guyon; Shohreh Kasaei; Sergio Escalera
Title Deep Learning for Action and Gesture Recognition in Image Sequences: A Survey Type Book Chapter
Year 2017 Publication (down) Gesture Recognition Abbreviated Journal
Volume Issue Pages 539-578
Keywords Action recognition; Gesture recognition; Deep learning architectures; Fusion strategies
Abstract Interest in automatic action and gesture recognition has grown considerably in the last few years. This is due in part to the large number of application domains for this type of technology. As in many other computer vision areas, deep learning based methods have quickly become a reference methodology for obtaining state-of-the-art performance in both tasks. This chapter is a survey of current deep learning based methodologies for action and gesture recognition in sequences of images. The survey reviews both fundamental and cutting edge methodologies reported in the last few years. We introduce a taxonomy that summarizes important aspects of deep learning for approaching both tasks. Details of the proposed architectures, fusion strategies, main datasets, and competitions are reviewed. Also, we summarize and discuss the main works proposed so far with particular interest on how they treat the temporal dimension of data, their highlighting features, and opportunities and challenges for future research. To the best of our knowledge this is the first survey in the topic. We foresee this survey will become a reference in this ever dynamic field of research.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HUPBA; no proj Approved no
Call Number Admin @ si @ ACB2017a Serial 2981
Permanent link to this record
 

 
Author Patricia Suarez; Angel Sappa; Boris X. Vintimilla
Title Deep learning-based vegetation index estimation Type Book Chapter
Year 2021 Publication (down) Generative Adversarial Networks for Image-to-Image Translation Abbreviated Journal
Volume Issue Pages 205-234
Keywords
Abstract Chapter 9
Address
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor A.Solanki; A.Nayyar; M.Naved
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MSIAU; 600.122 Approved no
Call Number Admin @ si @ SSV2021a Serial 3578
Permanent link to this record
 

 
Author Fernando Vilariño; Stephan Ameling; Gerard Lacey; Stephen Patchett; Hugh Mulcahy
Title Eye Tracking Search Patterns in Expert and Trainee Colonoscopists: A Novel Method of Assessing Endoscopic Competency? Type Journal Article
Year 2009 Publication (down) Gastrointestinal Endoscopy Abbreviated Journal GI
Volume 69 Issue 5 Pages 370
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area 800 Expedition Conference
Notes MV;SIAI Approved no
Call Number fernando @ fernando @ Serial 2420
Permanent link to this record
 

 
Author Y. Mori; M.Misawa; Jorge Bernal; M. Bretthauer; S.Kudo; A. Rastogi; Gloria Fernandez Esparrach
Title Artificial Intelligence for Disease Diagnosis-the Gold Standard Challenge Type Journal Article
Year 2022 Publication (down) Gastrointestinal Endoscopy Abbreviated Journal
Volume 96 Issue 2 Pages 370-372
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ISE Approved no
Call Number Admin @ si @ MMB2022 Serial 3701
Permanent link to this record
 

 
Author Carolina Malagelada; Fosca De Iorio; Fernando Azpiroz; Anna Accarino; Santiago Segui; Petia Radeva; Juan R. Malagelada
Title New Insight Into Intestinal Motor Function via Noninvasive Endoluminal Image Analysis Type Journal
Year 2008 Publication (down) Gastroenterology Abbreviated Journal
Volume 135 Issue 4 Pages 1155–1162
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MILAB Approved no
Call Number BCNPCL @ bcnpcl @ MDA2008 Serial 1040
Permanent link to this record
 

 
Author Cristina Sanchez Montes; Jorge Bernal; Ana Garcia Rodriguez; Henry Cordova; Gloria Fernandez Esparrach
Title Revisión de métodos computacionales de detección y clasificación de pólipos en imagen de colonoscopia Type Journal Article
Year 2020 Publication (down) Gastroenterología y Hepatología Abbreviated Journal GH
Volume 43 Issue 4 Pages 222-232
Keywords
Abstract Computer-aided diagnosis (CAD) is a tool with great potential to help endoscopists in the tasks of detecting and histologically classifying colorectal polyps. In recent years, different technologies have been described and their potential utility has been increasingly evidenced, which has generated great expectations among scientific societies. However, most of these works are retrospective and use images of different quality and characteristics which are analysed off line. This review aims to familiarise gastroenterologists with computational methods and the particularities of endoscopic imaging, which have an impact on image processing analysis. Finally, the publicly available image databases, needed to compare and confirm the results obtained with different methods, are presented.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MV; Approved no
Call Number Admin @ si @ SBG2020 Serial 3404
Permanent link to this record
 

 
Author David Roche; Debora Gil; Jesus Giraldo
Title Mathematical modeling of G protein-coupled receptor function: What can we learn from empirical and mechanistic models? Type Book Chapter
Year 2014 Publication (down) G Protein-Coupled Receptors – Modeling and Simulation Advances in Experimental Medicine and Biology Abbreviated Journal
Volume 796 Issue 3 Pages 159-181
Keywords β-arrestin; biased agonism; curve fitting; empirical modeling; evolutionary algorithm; functional selectivity; G protein; GPCR; Hill coefficient; intrinsic efficacy; inverse agonism; mathematical modeling; mechanistic modeling; operational model; parameter optimization; receptor dimer; receptor oligomerization; receptor constitutive activity; signal transduction; two-state model
Abstract Empirical and mechanistic models differ in their approaches to the analysis of pharmacological effect. Whereas the parameters of the former are not physical constants those of the latter embody the nature, often complex, of biology. Empirical models are exclusively used for curve fitting, merely to characterize the shape of the E/[A] curves. Mechanistic models, on the contrary, enable the examination of mechanistic hypotheses by parameter simulation. Regretfully, the many parameters that mechanistic models may include can represent a great difficulty for curve fitting, representing, thus, a challenge for computational method development. In the present study some empirical and mechanistic models are shown and the connections, which may appear in a number of cases between them, are analyzed from the curves they yield. It may be concluded that systematic and careful curve shape analysis can be extremely useful for the understanding of receptor function, ligand classification and drug discovery, thus providing a common language for the communication between pharmacologists and medicinal chemists.
Address
Corporate Author Thesis
Publisher Springer Netherlands Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0065-2598 ISBN 978-94-007-7422-3 Medium
Area Expedition Conference
Notes IAM; 600.075 Approved no
Call Number IAM @ iam @ RGG2014 Serial 2197
Permanent link to this record
 

 
Author Misael Rosales; Petia Radeva; Oriol Rodriguez; Debora Gil
Title Suppression of IVUS Image Rotation. A Kinematic Approach Type Book Chapter
Year 2005 Publication (down) Functional Imaging and Modeling of the Heart Abbreviated Journal LNCS
Volume 3504 Issue Pages 889-892
Keywords
Abstract IntraVascular Ultrasound (IVUS) is an exploratory technique used in interventional procedures that shows cross section images of arteries and provides qualitative information about the causes and severity of the arterial lumen narrowing. Cross section analysis as well as visualization of plaque extension in a vessel segment during the catheter imaging pullback are the technique main advantages. However, IVUS sequence exhibits a periodic rotation artifact that makes difficult the longitudinal lesion inspection and hinders any segmentation algorithm. In this paper we propose a new kinematic method to estimate and remove the image rotation of IVUS images sequences. Results on several IVUS sequences show good results and prompt some of the clinical applications to vessel dynamics study, and relation to vessel pathology.
Address
Corporate Author Thesis
Publisher Springer Berlin / Heidelberg Place of Publication Editor Frangi, Alejandro and Radeva, Petia and Santos, Andres and Hernandez, Monica
Language Summary Language Original Title
Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title LNCS
Series Volume 3504 Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM;MILAB Approved no
Call Number IAM @ iam @ RRR2005 Serial 1645
Permanent link to this record
 

 
Author Olivier Penacchio; Xavier Otazu; Arnold J Wilkings; Sara M. Haigh
Title A mechanistic account of visual discomfort Type Journal Article
Year 2023 Publication (down) Frontiers in Neuroscience Abbreviated Journal FN
Volume 17 Issue Pages
Keywords
Abstract Much of the neural machinery of the early visual cortex, from the extraction of local orientations to contextual modulations through lateral interactions, is thought to have developed to provide a sparse encoding of contour in natural scenes, allowing the brain to process efficiently most of the visual scenes we are exposed to. Certain visual stimuli, however, cause visual stress, a set of adverse effects ranging from simple discomfort to migraine attacks, and epileptic seizures in the extreme, all phenomena linked with an excessive metabolic demand. The theory of efficient coding suggests a link between excessive metabolic demand and images that deviate from natural statistics. Yet, the mechanisms linking energy demand and image spatial content in discomfort remain elusive. Here, we used theories of visual coding that link image spatial structure and brain activation to characterize the response to images observers reported as uncomfortable in a biologically based neurodynamic model of the early visual cortex that included excitatory and inhibitory layers to implement contextual influences. We found three clear markers of aversive images: a larger overall activation in the model, a less sparse response, and a more unbalanced distribution of activity across spatial orientations. When the ratio of excitation over inhibition was increased in the model, a phenomenon hypothesised to underlie interindividual differences in susceptibility to visual discomfort, the three markers of discomfort progressively shifted toward values typical of the response to uncomfortable stimuli. Overall, these findings propose a unifying mechanistic explanation for why there are differences between images and between observers, suggesting how visual input and idiosyncratic hyperexcitability give rise to abnormal brain responses that result in visual stress.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes NEUROBIT Approved no
Call Number Admin @ si @ POW2023 Serial 3886
Permanent link to this record
 

 
Author Giuseppe De Gregorio; Sanket Biswas; Mohamed Ali Souibgui; Asma Bensalah; Josep Llados; Alicia Fornes; Angelo Marcelli
Title A Few Shot Multi-representation Approach for N-Gram Spotting in Historical Manuscripts Type Conference Article
Year 2022 Publication (down) Frontiers in Handwriting Recognition. International Conference on Frontiers in Handwriting Recognition (ICFHR2022) Abbreviated Journal
Volume 13639 Issue Pages 3-12
Keywords N-gram spotting; Few-shot learning; Multimodal understanding; Historical handwritten collections
Abstract Despite recent advances in automatic text recognition, the performance remains moderate when it comes to historical manuscripts. This is mainly because of the scarcity of available labelled data to train the data-hungry Handwritten Text Recognition (HTR) models. The Keyword Spotting System (KWS) provides a valid alternative to HTR due to the reduction in error rate, but it is usually limited to a closed reference vocabulary. In this paper, we propose a few-shot learning paradigm for spotting sequences of a few characters (N-gram) that requires a small amount of labelled training data. We exhibit that recognition of important n-grams could reduce the system’s dependency on vocabulary. In this case, an out-of-vocabulary (OOV) word in an input handwritten line image could be a sequence of n-grams that belong to the lexicon. An extensive experimental evaluation of our proposed multi-representation approach was carried out on a subset of Bentham’s historical manuscript collections to obtain some really promising results in this direction.
Address December 04 – 07, 2022; Hyderabad, India
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICFHR
Notes DAG; 600.121; 600.162; 602.230; 600.140 Approved no
Call Number Admin @ si @ GBS2022 Serial 3733
Permanent link to this record
 

 
Author Arnau Baro; Pau Riba; Alicia Fornes
Title Musigraph: Optical Music Recognition Through Object Detection and Graph Neural Network Type Conference Article
Year 2022 Publication (down) Frontiers in Handwriting Recognition. International Conference on Frontiers in Handwriting Recognition (ICFHR2022) Abbreviated Journal
Volume 13639 Issue Pages 171-184
Keywords Object detection; Optical music recognition; Graph neural network
Abstract During the last decades, the performance of optical music recognition has been increasingly improving. However, and despite the 2-dimensional nature of music notation (e.g. notes have rhythm and pitch), most works treat musical scores as a sequence of symbols in one dimension, which make their recognition still a challenge. Thus, in this work we explore the use of graph neural networks for musical score recognition. First, because graphs are suited for n-dimensional representations, and second, because the combination of graphs with deep learning has shown a great performance in similar applications. Our methodology consists of: First, we will detect each isolated/atomic symbols (those that can not be decomposed in more graphical primitives) and the primitives that form a musical symbol. Then, we will build the graph taking as root node the notehead and as leaves those primitives or symbols that modify the note’s rhythm (stem, beam, flag) or pitch (flat, sharp, natural). Finally, the graph is translated into a human-readable character sequence for a final transcription and evaluation. Our method has been tested on more than five thousand measures, showing promising results.
Address December 04 – 07, 2022; Hyderabad, India
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICFHR
Notes DAG; 600.162; 600.140; 602.230 Approved no
Call Number Admin @ si @ BRF2022b Serial 3740
Permanent link to this record
 

 
Author Utkarsh Porwal; Alicia Fornes; Faisal Shafait (eds)
Title Frontiers in Handwriting Recognition. International Conference on Frontiers in Handwriting Recognition. 18th International Conference, ICFHR 2022 Type Book Whole
Year 2022 Publication (down) Frontiers in Handwriting Recognition. Abbreviated Journal
Volume 13639 Issue Pages
Keywords
Abstract
Address ICFHR 2022, Hyderabad, India, December 4–7, 2022
Corporate Author Thesis
Publisher Springer Place of Publication Editor Utkarsh Porwal; Alicia Fornes; Faisal Shafait
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN 978-3-031-21648-0 Medium
Area Expedition Conference ICFHR
Notes DAG Approved no
Call Number Admin @ si @ PFS2022 Serial 3809
Permanent link to this record
 

 
Author Zahra Raisi-Estabragh; Carlos Martin-Isla; Louise Nissen; Liliana Szabo; Victor M. Campello; Sergio Escalera; Simon Winther; Morten Bottcher; Karim Lekadir; and Steffen E. Petersen
Title Radiomics analysis enhances the diagnostic performance of CMR stress perfusion: a proof-of-concept study using the Dan-NICAD dataset Type Journal Article
Year 2023 Publication (down) Frontiers in Cardiovascular Medicine Abbreviated Journal FCM
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HUPBA Approved no
Call Number Admin @ si @ RMN2023 Serial 3937
Permanent link to this record