toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Sergio Escalera; Markus Weimer; Mikhail Burtsev; Valentin Malykh; Varvara Logacheva; Ryan Lowe; Iulian Vlad Serban; Yoshua Bengio; Alexander Rudnicky; Alan W. Black; Shrimai Prabhumoye; Łukasz Kidzinski; Mohanty Sharada; Carmichael Ong; Jennifer Hicks; Sergey Levine; Marcel Salathe; Scott Delp; Iker Huerga; Alexander Grigorenko; Leifur Thorbergsson; Anasuya Das; Kyla Nemitz; Jenna Sandker; Stephen King; Alexander S. Ecker; Leon A. Gatys; Matthias Bethge; Jordan Boyd Graber; Shi Feng; Pedro Rodriguez; Mohit Iyyer; He He; Hal Daume III; Sean McGregor; Amir Banifatemi; Alexey Kurakin; Ian Goodfellow; Samy Bengio edit  url
isbn  openurl
  Title Introduction to NIPS 2017 Competition Track Type Book Chapter
  Year 2018 Publication (up) The NIPS ’17 Competition: Building Intelligent Systems Abbreviated Journal  
  Volume Issue Pages 1-23  
  Keywords  
  Abstract Competitions have become a popular tool in the data science community to solve hard problems, assess the state of the art and spur new research directions. Companies like Kaggle and open source platforms like Codalab connect people with data and a data science problem to those with the skills and means to solve it. Hence, the question arises: What, if anything, could NIPS add to this rich ecosystem?

In 2017, we embarked to find out. We attracted 23 potential competitions, of which we selected five to be NIPS 2017 competitions. Our final selection features competitions advancing the state of the art in other sciences such as “Classifying Clinically Actionable Genetic Mutations” and “Learning to Run”. Others, like “The Conversational Intelligence Challenge” and “Adversarial Attacks and Defences” generated new data sets that we expect to impact the progress in their respective communities for years to come. And “Human-Computer Question Answering Competition” showed us just how far we as a field have come in ability and efficiency since the break-through performance of Watson in Jeopardy. Two additional competitions, DeepArt and AI XPRIZE Milestions, were also associated to the NIPS 2017 competition track, whose results are also presented within this chapter.
 
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor Sergio Escalera; Markus Weimer  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-319-94042-7 Medium  
  Area Expedition Conference  
  Notes HUPBA; no proj Approved no  
  Call Number Admin @ si @ EWB2018 Serial 3200  
Permanent link to this record
 

 
Author Hugo Jair Escalante; Sergio Escalera; Isabelle Guyon; Xavier Baro; Yagmur Gucluturk; Umut Guçlu; Marcel van Gerven edit  url
doi  openurl
  Title Explainable and Interpretable Models in Computer Vision and Machine Learning Type Book Whole
  Year 2018 Publication (up) The Springer Series on Challenges in Machine Learning Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract This book compiles leading research on the development of explainable and interpretable machine learning methods in the context of computer vision and machine learning.
Research progress in computer vision and pattern recognition has led to a variety of modeling techniques with almost human-like performance. Although these models have obtained astounding results, they are limited in their explainability and interpretability: what is the rationale behind the decision made? what in the model structure explains its functioning? Hence, while good performance is a critical required characteristic for learning machines, explainability and interpretability capabilities are needed to take learning machines to the next step to include them in decision support systems involving human supervision.
This book, written by leading international researchers, addresses key topics of explainability and interpretability, including the following:

·Evaluation and Generalization in Interpretable Machine Learning
·Explanation Methods in Deep Learning
·Learning Functional Causal Models with Generative Neural Networks
·Learning Interpreatable Rules for Multi-Label Classification
·Structuring Neural Networks for More Explainable Predictions
·Generating Post Hoc Rationales of Deep Visual Classification Decisions
·Ensembling Visual Explanations
·Explainable Deep Driving by Visualizing Causal Attention
·Interdisciplinary Perspective on Algorithmic Job Candidate Search
·Multimodal Personality Trait Analysis for Explainable Modeling of Job Interview Decisions
·Inherent Explainability Pattern Theory-based Video Event Interpretations
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA; no menciona Approved no  
  Call Number Admin @ si @ EEG2018 Serial 3399  
Permanent link to this record
 

 
Author Cesar de Souza; Adrien Gaidon; Eleonora Vig; Antonio Lopez edit  openurl
  Title System and method for video classification using a hybrid unsupervised and supervised multi-layer architecture Type Patent
  Year 2018 Publication (up) US9946933B2 Abbreviated Journal  
  Volume Issue Pages  
  Keywords US9946933B2  
  Abstract A computer-implemented video classification method and system are disclosed. The method includes receiving an input video including a sequence of frames. At least one transformation of the input video is generated, each transformation including a sequence of frames. For the input video and each transformation, local descriptors are extracted from the respective sequence of frames. The local descriptors of the input video and each transformation are aggregated to form an aggregated feature vector with a first set of processing layers learned using unsupervised learning. An output classification value is generated for the input video, based on the aggregated feature vector with a second set of processing layers learned using supervised learning.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.118 Approved no  
  Call Number Admin @ si @ SGV2018 Serial 3255  
Permanent link to this record
 

 
Author Ivet Rafegas; Maria Vanrell edit   pdf
url  doi
openurl 
  Title Color encoding in biologically-inspired convolutional neural networks Type Journal Article
  Year 2018 Publication (up) Vision Research Abbreviated Journal VR  
  Volume 151 Issue Pages 7-17  
  Keywords Color coding; Computer vision; Deep learning; Convolutional neural networks  
  Abstract Convolutional Neural Networks have been proposed as suitable frameworks to model biological vision. Some of these artificial networks showed representational properties that rival primate performances in object recognition. In this paper we explore how color is encoded in a trained artificial network. It is performed by estimating a color selectivity index for each neuron, which allows us to describe the neuron activity to a color input stimuli. The index allows us to classify whether they are color selective or not and if they are of a single or double color. We have determined that all five convolutional layers of the network have a large number of color selective neurons. Color opponency clearly emerges in the first layer, presenting 4 main axes (Black-White, Red-Cyan, Blue-Yellow and Magenta-Green), but this is reduced and rotated as we go deeper into the network. In layer 2 we find a denser hue sampling of color neurons and opponency is reduced almost to one new main axis, the Bluish-Orangish coinciding with the dataset bias. In layers 3, 4 and 5 color neurons are similar amongst themselves, presenting different type of neurons that detect specific colored objects (e.g., orangish faces), specific surrounds (e.g., blue sky) or specific colored or contrasted object-surround configurations (e.g. blue blob in a green surround). Overall, our work concludes that color and shape representation are successively entangled through all the layers of the studied network, revealing certain parallelisms with the reported evidences in primate brains that can provide useful insight into intermediate hierarchical spatio-chromatic representations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes CIC; 600.051; 600.087 Approved no  
  Call Number Admin @ si @RaV2018 Serial 3114  
Permanent link to this record
 

 
Author Antonio Lopez edit  doi
openurl 
  Title Pedestrian Detection Systems Type Book Chapter
  Year 2018 Publication (up) Wiley Encyclopedia of Electrical and Electronics Engineering Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Pedestrian detection is a highly relevant topic for both advanced driver assistance systems (ADAS) and autonomous driving. In this entry, we review the ideas behind pedestrian detection systems from the point of view of perception based on computer vision and machine learning.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.118 Approved no  
  Call Number Admin @ si @ Lop2018 Serial 3230  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: