|   | 
Details
   web
Records
Author M. Li; Xialei Liu; Joost Van de Weijer; Bogdan Raducanu
Title Learning to Rank for Active Learning: A Listwise Approach Type Conference Article
Year 2020 Publication (up) 25th International Conference on Pattern Recognition Abbreviated Journal
Volume Issue Pages 5587-5594
Keywords
Abstract Active learning emerged as an alternative to alleviate the effort to label huge amount of data for data hungry applications (such as image/video indexing and retrieval, autonomous driving, etc.). The goal of active learning is to automatically select a number of unlabeled samples for annotation (according to a budget), based on an acquisition function, which indicates how valuable a sample is for training the model. The learning loss method is a task-agnostic approach which attaches a module to learn to predict the target loss of unlabeled data, and select data with the highest loss for labeling. In this work, we follow this strategy but we define the acquisition function as a learning to rank problem and rethink the structure of the loss prediction module, using a simple but effective listwise approach. Experimental results on four datasets demonstrate that our method outperforms recent state-of-the-art active learning approaches for both image classification and regression tasks.
Address Virtual; January 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICPR
Notes LAMP; 600.120 Approved no
Call Number Admin @ si @ LLW2020a Serial 3511
Permanent link to this record
 

 
Author Idoia Ruiz; Joan Serrat
Title Rank-based ordinal classification Type Conference Article
Year 2020 Publication (up) 25th International Conference on Pattern Recognition Abbreviated Journal
Volume Issue Pages 8069-8076
Keywords
Abstract Differently from the regular classification task, in ordinal classification there is an order in the classes. As a consequence not all classification errors matter the same: a predicted class close to the groundtruth one is better than predicting a farther away class. To account for this, most previous works employ loss functions based on the absolute difference between the predicted and groundtruth class labels. We argue that there are many cases in ordinal classification where label values are arbitrary (for instance 1. . . C, being C the number of classes) and thus such loss functions may not be the best choice. We instead propose a network architecture that produces not a single class prediction but an ordered vector, or ranking, of all the possible classes from most to least likely. This is thanks to a loss function that compares groundtruth and predicted rankings of these class labels, not the labels themselves. Another advantage of this new formulation is that we can enforce consistency in the predictions, namely, predicted rankings come from some unimodal vector of scores with mode at the groundtruth class. We compare with the state of the art ordinal classification methods, showing
that ours attains equal or better performance, as measured by common ordinal classification metrics, on three benchmark datasets. Furthermore, it is also suitable for a new task on image aesthetics assessment, i.e. most voted score prediction. Finally, we also apply it to building damage assessment from satellite images, providing an analysis of its performance depending on the degree of imbalance of the dataset.
Address Virtual; January 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICPR
Notes ADAS; 600.118; 600.124 Approved no
Call Number Admin @ si @ RuS2020 Serial 3549
Permanent link to this record
 

 
Author Klara Janousckova; Jiri Matas; Lluis Gomez; Dimosthenis Karatzas
Title Text Recognition – Real World Data and Where to Find Them Type Conference Article
Year 2020 Publication (up) 25th International Conference on Pattern Recognition Abbreviated Journal
Volume Issue Pages 4489-4496
Keywords
Abstract We present a method for exploiting weakly annotated images to improve text extraction pipelines. The approach uses an arbitrary end-to-end text recognition system to obtain text region proposals and their, possibly erroneous, transcriptions. The method includes matching of imprecise transcriptions to weak annotations and an edit distance guided neighbourhood search. It produces nearly error-free, localised instances of scene text, which we treat as “pseudo ground truth” (PGT). The method is applied to two weakly-annotated datasets. Training with the extracted PGT consistently improves the accuracy of a state of the art recognition model, by 3.7% on average, across different benchmark datasets (image domains) and 24.5% on one of the weakly annotated datasets 1 1 Acknowledgements. The authors were supported by Czech Technical University student grant SGS20/171/0HK3/3TJ13, the MEYS VVV project CZ.02.1.01/0.010.0J16 019/0000765 Research Center for Informatics, the Spanish Research project TIN2017-89779-P and the CERCA Programme / Generalitat de Catalunya.
Address Virtual; January 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICPR
Notes DAG; 600.121; 600.129 Approved no
Call Number Admin @ si @ JMG2020 Serial 3557
Permanent link to this record
 

 
Author Henry Velesaca; Steven Araujo; Patricia Suarez; Angel Sanchez; Angel Sappa
Title Off-the-Shelf Based System for Urban Environment Video Analytics Type Conference Article
Year 2020 Publication (up) 27th International Conference on Systems, Signals and Image Processing Abbreviated Journal
Volume Issue Pages
Keywords greenhouse gases; carbon footprint; object detection; object tracking; website framework; off-the-shelf video analytics
Abstract This paper presents the design and implementation details of a system build-up by using off-the-shelf algorithms for urban video analytics. The system allows the connection to
public video surveillance camera networks to obtain the necessary information to generate statistics from urban scenarios (e.g., amount of vehicles, type of cars, direction, numbers of persons, etc.). The obtained information could be used not only for traffic management but also to estimate the carbon footprint of urban scenarios. As a case study, a university campus is selected to evaluate the performance of the proposed system. The system is implemented in a modular way so that it is being used as a testbed to evaluate different algorithms. Implementation results are provided showing the validity and utility of the proposed approach.
Address Virtual IWSSIP
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference IWSSIP
Notes MSIAU; 600.130; 601.349; 600.122 Approved no
Call Number Admin @ si @ VAS2020 Serial 3429
Permanent link to this record
 

 
Author Xinhang Song; Haitao Zeng; Sixian Zhang; Luis Herranz; Shuqiang Jiang
Title Generalized Zero-shot Learning with Multi-source Semantic Embeddings for Scene Recognition Type Conference Article
Year 2020 Publication (up) 28th ACM International Conference on Multimedia Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Recognizing visual categories from semantic descriptions is a promising way to extend the capability of a visual classifier beyond the concepts represented in the training data (i.e. seen categories). This problem is addressed by (generalized) zero-shot learning methods (GZSL), which leverage semantic descriptions that connect them to seen categories (e.g. label embedding, attributes). Conventional GZSL are designed mostly for object recognition. In this paper we focus on zero-shot scene recognition, a more challenging setting with hundreds of categories where their differences can be subtle and often localized in certain objects or regions. Conventional GZSL representations are not rich enough to capture these local discriminative differences. Addressing these limitations, we propose a feature generation framework with two novel components: 1) multiple sources of semantic information (i.e. attributes, word embeddings and descriptions), 2) region descriptions that can enhance scene discrimination. To generate synthetic visual features we propose a two-step generative approach, where local descriptions are sampled and used as conditions to generate visual features. The generated features are then aggregated and used together with real features to train a joint classifier. In order to evaluate the proposed method, we introduce a new dataset for zero-shot scene recognition with multi-semantic annotations. Experimental results on the proposed dataset and SUN Attribute dataset illustrate the effectiveness of the proposed method.
Address Virtual; October 2020
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ACM
Notes LAMP; 600.141; 600.120 Approved no
Call Number Admin @ si @ SZZ2020 Serial 3465
Permanent link to this record
 

 
Author Raul Gomez; Yahui Liu; Marco de Nadai; Dimosthenis Karatzas; Bruno Lepri; Nicu Sebe
Title Retrieval Guided Unsupervised Multi-domain Image to Image Translation Type Conference Article
Year 2020 Publication (up) 28th ACM International Conference on Multimedia Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Image to image translation aims to learn a mapping that transforms an image from one visual domain to another. Recent works assume that images descriptors can be disentangled into a domain-invariant content representation and a domain-specific style representation. Thus, translation models seek to preserve the content of source images while changing the style to a target visual domain. However, synthesizing new images is extremely challenging especially in multi-domain translations, as the network has to compose content and style to generate reliable and diverse images in multiple domains. In this paper we propose the use of an image retrieval system to assist the image-to-image translation task. First, we train an image-to-image translation model to map images to multiple domains. Then, we train an image retrieval model using real and generated images to find images similar to a query one in content but in a different domain. Finally, we exploit the image retrieval system to fine-tune the image-to-image translation model and generate higher quality images. Our experiments show the effectiveness of the proposed solution and highlight the contribution of the retrieval network, which can benefit from additional unlabeled data and help image-to-image translation models in the presence of scarce data.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ACM
Notes DAG; 600.121 Approved no
Call Number Admin @ si @ GLN2020 Serial 3497
Permanent link to this record
 

 
Author Sagnik Das; Hassan Ahmed Sial; Ke Ma; Ramon Baldrich; Maria Vanrell; Dimitris Samaras
Title Intrinsic Decomposition of Document Images In-the-Wild Type Conference Article
Year 2020 Publication (up) 31st British Machine Vision Conference Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Automatic document content processing is affected by artifacts caused by the shape
of the paper, non-uniform and diverse color of lighting conditions. Fully-supervised
methods on real data are impossible due to the large amount of data needed. Hence, the
current state of the art deep learning models are trained on fully or partially synthetic images. However, document shadow or shading removal results still suffer because: (a) prior methods rely on uniformity of local color statistics, which limit their application on real-scenarios with complex document shapes and textures and; (b) synthetic or hybrid datasets with non-realistic, simulated lighting conditions are used to train the models. In this paper we tackle these problems with our two main contributions. First, a physically constrained learning-based method that directly estimates document reflectance based on intrinsic image formation which generalizes to challenging illumination conditions. Second, a new dataset that clearly improves previous synthetic ones, by adding a large range of realistic shading and diverse multi-illuminant conditions, uniquely customized to deal with documents in-the-wild. The proposed architecture works in two steps. First, a white balancing module neutralizes the color of the illumination on the input image. Based on the proposed multi-illuminant dataset we achieve a good white-balancing in really difficult conditions. Second, the shading separation module accurately disentangles the shading and paper material in a self-supervised manner where only the synthetic texture is used as a weak training signal (obviating the need for very costly ground truth with disentangled versions of shading and reflectance). The proposed approach leads to significant generalization of document reflectance estimation in real scenes with challenging illumination. We extensively evaluate on the real benchmark datasets available for intrinsic image decomposition and document shadow removal tasks. Our reflectance estimation scheme, when used as a pre-processing step of an OCR pipeline, shows a 21% improvement of character error rate (CER), thus, proving the practical applicability. The data and code will be available at: https://github.com/cvlab-stonybrook/DocIIW.
Address Virtual; September 2020
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference BMVC
Notes CIC; 600.087; 600.140; 600.118 Approved no
Call Number Admin @ si @ DSM2020 Serial 3461
Permanent link to this record
 

 
Author Lorenzo Porzi; Markus Hofinger; Idoia Ruiz; Joan Serrat; Samuel Rota Bulo; Peter Kontschieder
Title Learning Multi-Object Tracking and Segmentation from Automatic Annotations Type Conference Article
Year 2020 Publication (up) 33rd IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal
Volume Issue Pages 6845-6854
Keywords
Abstract In this work we contribute a novel pipeline to automatically generate training data, and to improve over state-of-the-art multi-object tracking and segmentation (MOTS) methods. Our proposed track mining algorithm turns raw street-level videos into high-fidelity MOTS training data, is scalable and overcomes the need of expensive and time-consuming manual annotation approaches. We leverage state-of-the-art instance segmentation results in combination with optical flow predictions, also trained on automatically harvested training data. Our second major contribution is MOTSNet – a deep learning, tracking-by-detection architecture for MOTS – deploying a novel mask-pooling layer for improved object association over time. Training MOTSNet with our automatically extracted data leads to significantly improved sMOTSA scores on the novel KITTI MOTS dataset (+1.9%/+7.5% on cars/pedestrians), and MOTSNet improves by +4.1% over previously best methods on the MOTSChallenge dataset. Our most impressive finding is that we can improve over previous best-performing works, even in complete absence of manually annotated MOTS training data.
Address virtual; June 2020
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPR
Notes ADAS; 600.124; 600.118 Approved no
Call Number Admin @ si @ PHR2020 Serial 3402
Permanent link to this record
 

 
Author Vacit Oguz Yazici; Abel Gonzalez-Garcia; Arnau Ramisa; Bartlomiej Twardowski; Joost Van de Weijer
Title Orderless Recurrent Models for Multi-label Classification Type Conference Article
Year 2020 Publication (up) 33rd IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Recurrent neural networks (RNN) are popular for many computer vision tasks, including multi-label classification. Since RNNs produce sequential outputs, labels need to be ordered for the multi-label classification task. Current approaches sort labels according to their frequency, typically ordering them in either rare-first or frequent-first. These imposed orderings do not take into account that the natural order to generate the labels can change for each image, e.g.\ first the dominant object before summing up the smaller objects in the image. Therefore, in this paper, we propose ways to dynamically order the ground truth labels with the predicted label sequence. This allows for the faster training of more optimal LSTM models for multi-label classification. Analysis evidences that our method does not suffer from duplicate generation, something which is common for other models. Furthermore, it outperforms other CNN-RNN models, and we show that a standard architecture of an image encoder and language decoder trained with our proposed loss obtains the state-of-the-art results on the challenging MS-COCO, WIDER Attribute and PA-100K and competitive results on NUS-WIDE.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPR
Notes LAMP; 600.109; 601.309; 600.141; 600.120 Approved no
Call Number Admin @ si @ YGR2020 Serial 3408
Permanent link to this record
 

 
Author Yaxing Wang; Abel Gonzalez-Garcia; David Berga; Luis Herranz; Fahad Shahbaz Khan; Joost Van de Weijer
Title MineGAN: effective knowledge transfer from GANs to target domains with few images Type Conference Article
Year 2020 Publication (up) 33rd IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal
Volume Issue Pages
Keywords
Abstract One of the attractive characteristics of deep neural networks is their ability to transfer knowledge obtained in one domain to other related domains. As a result, high-quality networks can be trained in domains with relatively little training data. This property has been extensively studied for discriminative networks but has received significantly less attention for generative models. Given the often enormous effort required to train GANs, both computationally as well as in the dataset collection, the re-use of pretrained GANs is a desirable objective. We propose a novel knowledge transfer method for generative models based on mining the knowledge that is most beneficial to a specific target domain, either from a single or multiple pretrained GANs. This is done using a miner network that identifies which part of the generative distribution of each pretrained GAN outputs samples closest to the target domain. Mining effectively steers GAN sampling towards suitable regions of the latent space, which facilitates the posterior finetuning and avoids pathologies of other methods such as mode collapse and lack of flexibility. We perform experiments on several complex datasets using various GAN architectures (BigGAN, Progressive GAN) and show that the proposed method, called MineGAN, effectively transfers knowledge to domains with few target images, outperforming existing methods. In addition, MineGAN can successfully transfer knowledge from multiple pretrained GANs.
Address Virtual CVPR
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPR
Notes LAMP; 600.109; 600.141; 600.120 Approved no
Call Number Admin @ si @ WGB2020 Serial 3421
Permanent link to this record
 

 
Author Lu Yu; Bartlomiej Twardowski; Xialei Liu; Luis Herranz; Kai Wang; Yongmai Cheng; Shangling Jui; Joost Van de Weijer
Title Semantic Drift Compensation for Class-Incremental Learning of Embeddings Type Conference Article
Year 2020 Publication (up) 33rd IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Class-incremental learning of deep networks sequentially increases the number of classes to be classified. During training, the network has only access to data of one task at a time, where each task contains several classes. In this setting, networks suffer from catastrophic forgetting which refers to the drastic drop in performance on previous tasks. The vast majority of methods have studied this scenario for classification networks, where for each new task the classification layer of the network must be augmented with additional weights to make room for the newly added classes. Embedding networks have the advantage that new classes can be naturally included into the network without adding new weights. Therefore, we study incremental learning for embedding networks. In addition, we propose a new method to estimate the drift, called semantic drift, of features and compensate for it without the need of any exemplars. We approximate the drift of previous tasks based on the drift that is experienced by current task data. We perform experiments on fine-grained datasets, CIFAR100 and ImageNet-Subset. We demonstrate that embedding networks suffer significantly less from catastrophic forgetting. We outperform existing methods which do not require exemplars and obtain competitive results compared to methods which store exemplars. Furthermore, we show that our proposed SDC when combined with existing methods to prevent forgetting consistently improves results.
Address Virtual CVPR
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPR
Notes LAMP; 600.141; 601.309; 602.200; 600.120 Approved no
Call Number Admin @ si @ YTL2020 Serial 3422
Permanent link to this record
 

 
Author Ciprian Corneanu; Sergio Escalera; Aleix M. Martinez
Title Computing the Testing Error Without a Testing Set Type Conference Article
Year 2020 Publication (up) 33rd IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Oral. Paper award nominee.
Deep Neural Networks (DNNs) have revolutionized computer vision. We now have DNNs that achieve top (performance) results in many problems, including object recognition, facial expression analysis, and semantic segmentation, to name but a few. The design of the DNNs that achieve top results is, however, non-trivial and mostly done by trailand-error. That is, typically, researchers will derive many DNN architectures (i.e., topologies) and then test them on multiple datasets. However, there are no guarantees that the selected DNN will perform well in the real world. One can use a testing set to estimate the performance gap between the training and testing sets, but avoiding overfitting-to-thetesting-data is almost impossible. Using a sequestered testing dataset may address this problem, but this requires a constant update of the dataset, a very expensive venture. Here, we derive an algorithm to estimate the performance gap between training and testing that does not require any testing dataset. Specifically, we derive a number of persistent topology measures that identify when a DNN is learning to generalize to unseen samples. This allows us to compute the DNN’s testing error on unseen samples, even when we do not have access to them. We provide extensive experimental validation on multiple networks and datasets to demonstrate the feasibility of the proposed approach.
Address Virtual CVPR
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPR
Notes HuPBA; no proj Approved no
Call Number Admin @ si @ CEM2020 Serial 3437
Permanent link to this record
 

 
Author Swathikiran Sudhakaran; Sergio Escalera; Oswald Lanz
Title Gate-Shift Networks for Video Action Recognition Type Conference Article
Year 2020 Publication (up) 33rd IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Deep 3D CNNs for video action recognition are designed to learn powerful representations in the joint spatio-temporal feature space. In practice however, because of the large number of parameters and computations involved, they may under-perform in the lack of sufficiently large datasets for training them at scale. In this paper we introduce spatial gating in spatial-temporal decomposition of 3D kernels. We implement this concept with Gate-Shift Module (GSM). GSM is lightweight and turns a 2D-CNN into a highly efficient spatio-temporal feature extractor. With GSM plugged in, a 2D-CNN learns to adaptively route features through time and combine them, at almost no additional parameters and computational overhead. We perform an extensive evaluation of the proposed module to study its effectiveness in video action recognition, achieving state-of-the-art results on Something Something-V1 and Diving48 datasets, and obtaining competitive results on EPIC-Kitchens with far less model complexity.
Address Virtual CVPR
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPR
Notes HuPBA; no proj Approved no
Call Number Admin @ si @ SEL2020 Serial 3438
Permanent link to this record
 

 
Author Yaxing Wang; Salman Khan; Abel Gonzalez-Garcia; Joost Van de Weijer; Fahad Shahbaz Khan
Title Semi-supervised Learning for Few-shot Image-to-Image Translation Type Conference Article
Year 2020 Publication (up) 33rd IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal
Volume Issue Pages
Keywords
Abstract In the last few years, unpaired image-to-image translation has witnessed remarkable progress. Although the latest methods are able to generate realistic images, they crucially rely on a large number of labeled images. Recently, some methods have tackled the challenging setting of few-shot image-to-image translation, reducing the labeled data requirements for the target domain during inference. In this work, we go one step further and reduce the amount of required labeled data also from the source domain during training. To do so, we propose applying semi-supervised learning via a noise-tolerant pseudo-labeling procedure. We also apply a cycle consistency constraint to further exploit the information from unlabeled images, either from the same dataset or external. Additionally, we propose several structural modifications to facilitate the image translation task under these circumstances. Our semi-supervised method for few-shot image translation, called SEMIT, achieves excellent results on four different datasets using as little as 10% of the source labels, and matches the performance of the main fully-supervised competitor using only 20% labeled data. Our code and models are made public at: this https URL.
Address Virtual; June 2020
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPR
Notes LAMP; 600.120 Approved no
Call Number Admin @ si @ WKG2020 Serial 3486
Permanent link to this record
 

 
Author Minesh Mathew; Ruben Tito; Dimosthenis Karatzas; R.Manmatha; C.V. Jawahar
Title Document Visual Question Answering Challenge 2020 Type Conference Article
Year 2020 Publication (up) 33rd IEEE Conference on Computer Vision and Pattern Recognition – Short paper Abbreviated Journal
Volume Issue Pages
Keywords
Abstract This paper presents results of Document Visual Question Answering Challenge organized as part of “Text and Documents in the Deep Learning Era” workshop, in CVPR 2020. The challenge introduces a new problem – Visual Question Answering on document images. The challenge comprised two tasks. The first task concerns with asking questions on a single document image. On the other hand, the second task is set as a retrieval task where the question is posed over a collection of images. For the task 1 a new dataset is introduced comprising 50,000 questions-answer(s) pairs defined over 12,767 document images. For task 2 another dataset has been created comprising 20 questions over 14,362 document images which share the same document template.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPR
Notes DAG; 600.121 Approved no
Call Number Admin @ si @ MTK2020 Serial 3558
Permanent link to this record