|   | 
Details
   web
Records
Author Lu Yu; Lichao Zhang; Joost Van de Weijer; Fahad Shahbaz Khan; Yongmei Cheng; C. Alejandro Parraga
Title Beyond Eleven Color Names for Image Understanding Type Journal Article
Year 2018 Publication Machine Vision and Applications Abbreviated Journal MVAP
Volume 29 Issue 2 Pages 361-373
Keywords Color name; Discriminative descriptors; Image classification; Re-identification; Tracking
Abstract Color description is one of the fundamental problems of image understanding. One of the popular ways to represent colors is by means of color names. Most existing work on color names focuses on only the eleven basic color terms of the English language. This could be limiting the discriminative power of these representations, and representations based on more color names are expected to perform better. However, there exists no clear strategy to choose additional color names. We collect a dataset of 28 additional color names. To ensure that the resulting color representation has high discriminative power we propose a method to order the additional color names according to their complementary nature with the basic color names. This allows us to compute color name representations with high discriminative power of arbitrary length. In the experiments we show that these new color name descriptors outperform the existing color name descriptor on the task of visual tracking, person re-identification and image classification.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (down) LAMP; NEUROBIT; 600.068; 600.109; 600.120 Approved no
Call Number Admin @ si @ YYW2018 Serial 3087
Permanent link to this record
 

 
Author Carlo Gatta; Francesco Ciompi
Title Stacked Sequential Scale-Space Taylor Context Type Journal Article
Year 2014 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI
Volume 36 Issue 8 Pages 1694-1700
Keywords
Abstract We analyze sequential image labeling methods that sample the posterior label field in order to gather contextual information. We propose an effective method that extracts local Taylor coefficients from the posterior at different scales. Results show that our proposal outperforms state-of-the-art methods on MSRC-21, CAMVID, eTRIMS8 and KAIST2 data sets.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0162-8828 ISBN Medium
Area Expedition Conference
Notes (down) LAMP; MILAB; 601.160; 600.079 Approved no
Call Number Admin @ si @ GaC2014 Serial 2466
Permanent link to this record
 

 
Author Carlo Gatta; Adriana Romero; Joost Van de Weijer
Title Unrolling loopy top-down semantic feedback in convolutional deep networks Type Conference Article
Year 2014 Publication Workshop on Deep Vision: Deep Learning for Computer Vision Abbreviated Journal
Volume Issue Pages 498-505
Keywords
Abstract In this paper, we propose a novel way to perform top-down semantic feedback in convolutional deep networks for efficient and accurate image parsing. We also show how to add global appearance/semantic features, which have shown to improve image parsing performance in state-of-the-art methods, and was not present in previous convolutional approaches. The proposed method is characterised by an efficient training and a sufficiently fast testing. We use the well known SIFTflow dataset to numerically show the advantages provided by our contributions, and to compare with state-of-the-art image parsing convolutional based approaches.
Address Columbus; Ohio; June 2014
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPRW
Notes (down) LAMP; MILAB; 601.160; 600.079 Approved no
Call Number Admin @ si @ GRW2014 Serial 2490
Permanent link to this record
 

 
Author Eduardo Aguilar; Bogdan Raducanu; Petia Radeva; Joost Van de Weijer
Title Continual Evidential Deep Learning for Out-of-Distribution Detection Type Conference Article
Year 2023 Publication IEEE/CVF International Conference on Computer Vision (ICCV) Workshops -Visual Continual Learning workshop Abbreviated Journal
Volume Issue Pages 3444-3454
Keywords
Abstract Uncertainty-based deep learning models have attracted a great deal of interest for their ability to provide accurate and reliable predictions. Evidential deep learning stands out achieving remarkable performance in detecting out-of-distribution (OOD) data with a single deterministic neural network. Motivated by this fact, in this paper we propose the integration of an evidential deep learning method into a continual learning framework in order to perform simultaneously incremental object classification and OOD detection. Moreover, we analyze the ability of vacuity and dissonance to differentiate between in-distribution data belonging to old classes and OOD data. The proposed method, called CEDL, is evaluated on CIFAR-100 considering two settings consisting of 5 and 10 tasks, respectively. From the obtained results, we could appreciate that the proposed method, in addition to provide comparable results in object classification with respect to the baseline, largely outperforms OOD detection compared to several posthoc methods on three evaluation metrics: AUROC, AUPR and FPR95.
Address Paris; France; October 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICCVW
Notes (down) LAMP; MILAB Approved no
Call Number Admin @ si @ ARR2023 Serial 3841
Permanent link to this record
 

 
Author Eduardo Aguilar; Bogdan Raducanu; Petia Radeva; Joost Van de Weijer
Title Continual Evidential Deep Learning for Out-of-Distribution Detection Type Conference Article
Year 2023 Publication Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops Abbreviated Journal
Volume Issue Pages 3444-3454
Keywords
Abstract Uncertainty-based deep learning models have attracted a great deal of interest for their ability to provide accurate and reliable predictions. Evidential deep learning stands out achieving remarkable performance in detecting out-ofdistribution (OOD) data with a single deterministic neural network. Motivated by this fact, in this paper we propose the integration of an evidential deep learning method into a continual learning framework in order to perform simultaneously incremental object classification and OOD detection. Moreover, we analyze the ability of vacuity and dissonance to differentiate between in-distribution data belonging to old classes and OOD data. The proposed method 1, called CEDL, is evaluated on CIFAR-100 considering two settings consisting of 5 and 10 tasks, respectively. From the obtained results, we could appreciate that the proposed method, in addition to provide comparable results in object classification with respect to the baseline, largely outperforms OOD detection compared to several posthoc methods on three evaluation metrics: AUROC, AUPR and FPR95.
Address Paris; France; October 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICCVW
Notes (down) LAMP; MILAB Approved no
Call Number Admin @ si @ ARR2023 Serial 3974
Permanent link to this record
 

 
Author Vacit Oguz Yazici; Longlong Yu; Arnau Ramisa; Luis Herranz; Joost Van de Weijer
Title Main product detection with graph networks for fashion Type Journal Article
Year 2024 Publication Multimedia Tools and Applications Abbreviated Journal MTAP
Volume 83 Issue Pages 3215–3231
Keywords
Abstract Computer vision has established a foothold in the online fashion retail industry. Main product detection is a crucial step of vision-based fashion product feed parsing pipelines, focused on identifying the bounding boxes that contain the product being sold in the gallery of images of the product page. The current state-of-the-art approach does not leverage the relations between regions in the image, and treats images of the same product independently, therefore not fully exploiting visual and product contextual information. In this paper, we propose a model that incorporates Graph Convolutional Networks (GCN) that jointly represent all detected bounding boxes in the gallery as nodes. We show that the proposed method is better than the state-of-the-art, especially, when we consider the scenario where title-input is missing at inference time and for cross-dataset evaluation, our method outperforms previous approaches by a large margin.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (down) LAMP; MACO; 600.147; 600.167; 600.164; 600.161; 600.141; 601.309 Approved no
Call Number Admin @ si @ YYR2024 Serial 4017
Permanent link to this record
 

 
Author Shiqi Yang; Yaxing Wang; Luis Herranz; Shangling Jui; Joost Van de Weijer
Title Casting a BAIT for offline and online source-free domain adaptation Type Journal Article
Year 2023 Publication Computer Vision and Image Understanding Abbreviated Journal CVIU
Volume 234 Issue Pages 103747
Keywords
Abstract We address the source-free domain adaptation (SFDA) problem, where only the source model is available during adaptation to the target domain. We consider two settings: the offline setting where all target data can be visited multiple times (epochs) to arrive at a prediction for each target sample, and the online setting where the target data needs to be directly classified upon arrival. Inspired by diverse classifier based domain adaptation methods, in this paper we introduce a second classifier, but with another classifier head fixed. When adapting to the target domain, the additional classifier initialized from source classifier is expected to find misclassified features. Next, when updating the feature extractor, those features will be pushed towards the right side of the source decision boundary, thus achieving source-free domain adaptation. Experimental results show that the proposed method achieves competitive results for offline SFDA on several benchmark datasets compared with existing DA and SFDA methods, and our method surpasses by a large margin other SFDA methods under online source-free domain adaptation setting.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (down) LAMP; MACO Approved no
Call Number Admin @ si @ YWH2023 Serial 3874
Permanent link to this record
 

 
Author Yaxing Wang; Abel Gonzalez-Garcia; Chenshen Wu; Luis Herranz; Fahad Shahbaz Khan; Shangling Jui; Jian Yang; Joost Van de Weijer
Title MineGAN++: Mining Generative Models for Efficient Knowledge Transfer to Limited Data Domains Type Journal Article
Year 2024 Publication International Journal of Computer Vision Abbreviated Journal IJCV
Volume 132 Issue Pages 490–514
Keywords
Abstract Given the often enormous effort required to train GANs, both computationally as well as in dataset collection, the re-use of pretrained GANs largely increases the potential impact of generative models. Therefore, we propose a novel knowledge transfer method for generative models based on mining the knowledge that is most beneficial to a specific target domain, either from a single or multiple pretrained GANs. This is done using a miner network that identifies which part of the generative distribution of each pretrained GAN outputs samples closest to the target domain. Mining effectively steers GAN sampling towards suitable regions of the latent space, which facilitates the posterior finetuning and avoids pathologies of other methods, such as mode collapse and lack of flexibility. Furthermore, to prevent overfitting on small target domains, we introduce sparse subnetwork selection, that restricts the set of trainable neurons to those that are relevant for the target dataset. We perform comprehensive experiments on several challenging datasets using various GAN architectures (BigGAN, Progressive GAN, and StyleGAN) and show that the proposed method, called MineGAN, effectively transfers knowledge to domains with few target images, outperforming existing methods. In addition, MineGAN can successfully transfer knowledge from multiple pretrained GANs. MineGAN.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (down) LAMP; MACO Approved no
Call Number Admin @ si @ WGW2024 Serial 3888
Permanent link to this record
 

 
Author Shiqi Yang; Yaxing Wang; Joost Van de Weijer; Luis Herranz; Shangling Jui; Jian Yang
Title Trust Your Good Friends: Source-Free Domain Adaptation by Reciprocal Neighborhood Clustering Type Journal Article
Year 2023 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI
Volume 45 Issue 12 Pages 15883-15895
Keywords
Abstract Domain adaptation (DA) aims to alleviate the domain shift between source domain and target domain. Most DA methods require access to the source data, but often that is not possible (e.g., due to data privacy or intellectual property). In this paper, we address the challenging source-free domain adaptation (SFDA) problem, where the source pretrained model is adapted to the target domain in the absence of source data. Our method is based on the observation that target data, which might not align with the source domain classifier, still forms clear clusters. We capture this intrinsic structure by defining local affinity of the target data, and encourage label consistency among data with high local affinity. We observe that higher affinity should be assigned to reciprocal neighbors. To aggregate information with more context, we consider expanded neighborhoods with small affinity values. Furthermore, we consider the density around each target sample, which can alleviate the negative impact of potential outliers. In the experimental results we verify that the inherent structure of the target features is an important source of information for domain adaptation. We demonstrate that this local structure can be efficiently captured by considering the local neighbors, the reciprocal neighbors, and the expanded neighborhood. Finally, we achieve state-of-the-art performance on several 2D image and 3D point cloud recognition datasets.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (down) LAMP; MACO Approved no
Call Number Admin @ si @ YWW2023 Serial 3889
Permanent link to this record
 

 
Author Yifan Wang; Luka Murn; Luis Herranz; Fei Yang; Marta Mrak; Wei Zhang; Shuai Wan; Marc Gorriz Blanch
Title Efficient Super-Resolution for Compression Of Gaming Videos Type Conference Article
Year 2023 Publication IEEE International Conference on Acoustics, Speech and Signal Processing Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Due to the increasing demand for game-streaming services, efficient compression of computer-generated video is more critical than ever, especially when the available bandwidth is low. This paper proposes a super-resolution framework that improves the coding efficiency of computer-generated gaming videos at low bitrates. Most state-of-the-art super-resolution networks generalize over a variety of RGB inputs and use a unified network architecture for frames of different levels of degradation, leading to high complexity and redundancy. Since games usually consist of a limited number of fixed scenarios, we specialize one model for each scenario and assign appropriate network capacities for different QPs to perform super-resolution under the guidance of reconstructed high-quality luma components. Experimental results show that our framework achieves a superior quality-complexity trade-off compared to the ESRnet baseline, saving at most 93.59% parameters while maintaining comparable performance. The compression efficiency compared to HEVC is also improved by more than 17% BD-rate gain.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICASSP
Notes (down) LAMP; MACO Approved no
Call Number Admin @ si @ WMH2023 Serial 3911
Permanent link to this record
 

 
Author Mikhail Mozerov; Joost Van de Weijer
Title Improved Recursive Geodesic Distance Computation for Edge Preserving Filter Type Journal Article
Year 2017 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP
Volume 26 Issue 8 Pages 3696 - 3706
Keywords Geodesic distance filter; color image filtering; image enhancement
Abstract All known recursive filters based on the geodesic distance affinity are realized by two 1D recursions applied in two orthogonal directions of the image plane. The 2D extension of the filter is not valid and has theoretically drawbacks, which lead to known artifacts. In this paper, a maximum influence propagation method is proposed to approximate the 2D extension for the
geodesic distance-based recursive filter. The method allows to partially overcome the drawbacks of the 1D recursion approach. We show that our improved recursion better approximates the true geodesic distance filter, and the application of this improved filter for image denoising outperforms the existing recursive implementation of the geodesic distance. As an application,
we consider a geodesic distance-based filter for image denoising.
Experimental evaluation of our denoising method demonstrates comparable and for several test images better results, than stateof-the-art approaches, while our algorithm is considerably fasterwith computational complexity O(8P).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (down) LAMP; ISE; 600.120; 600.098; 600.119 Approved no
Call Number Admin @ si @ Moz2017 Serial 2921
Permanent link to this record
 

 
Author Francesco Ciompi; Oriol Pujol; Petia Radeva
Title ECOC-DRF: Discriminative random fields based on error correcting output codes Type Journal Article
Year 2014 Publication Pattern Recognition Abbreviated Journal PR
Volume 47 Issue 6 Pages 2193-2204
Keywords Discriminative random fields; Error-correcting output codes; Multi-class classification; Graphical models
Abstract We present ECOC-DRF, a framework where potential functions for Discriminative Random Fields are formulated as an ensemble of classifiers. We introduce the label trick, a technique to express transitions in the pairwise potential as meta-classes. This allows to independently learn any possible transition between labels without assuming any pre-defined model. The Error Correcting Output Codes matrix is used as ensemble framework for the combination of margin classifiers. We apply ECOC-DRF to a large set of classification problems, covering synthetic, natural and medical images for binary and multi-class cases, outperforming state-of-the art in almost all the experiments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (down) LAMP; HuPBA; MILAB; 605.203; 600.046; 601.043; 600.079 Approved no
Call Number Admin @ si @ CPR2014b Serial 2470
Permanent link to this record
 

 
Author Adria Ruiz; Joost Van de Weijer; Xavier Binefa
Title Regularized Multi-Concept MIL for weakly-supervised facial behavior categorization Type Conference Article
Year 2014 Publication 25th British Machine Vision Conference Abbreviated Journal
Volume Issue Pages
Keywords
Abstract We address the problem of estimating high-level semantic labels for videos of recorded people by means of analysing their facial expressions. This problem, to which we refer as facial behavior categorization, is a weakly-supervised learning problem where we do not have access to frame-by-frame facial gesture annotations but only weak-labels at the video level are available. Therefore, the goal is to learn a set of discriminative expressions and how they determine the video weak-labels. Facial behavior categorization can be posed as a Multi-Instance-Learning (MIL) problem and we propose a novel MIL method called Regularized Multi-Concept MIL to solve it. In contrast to previous approaches applied in facial behavior analysis, RMC-MIL follows a Multi-Concept assumption which allows different facial expressions (concepts) to contribute differently to the video-label. Moreover, to handle with the high-dimensional nature of facial-descriptors, RMC-MIL uses a discriminative approach to model the concepts and structured sparsity regularization to discard non-informative features. RMC-MIL is posed as a convex-constrained optimization problem where all the parameters are jointly learned using the Projected-Quasi-Newton method. In our experiments, we use two public data-sets to show the advantages of the Regularized Multi-Concept approach and its improvement compared to existing MIL methods. RMC-MIL outperforms state-of-the-art results in the UNBC data-set for pain detection.
Address Nottingham; UK; September 2014
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference BMVC
Notes (down) LAMP; CIC; 600.074; 600.079 Approved no
Call Number Admin @ si @ RWB2014 Serial 2508
Permanent link to this record
 

 
Author Xialei Liu; Marc Masana; Luis Herranz; Joost Van de Weijer; Antonio Lopez; Andrew Bagdanov
Title Rotate your Networks: Better Weight Consolidation and Less Catastrophic Forgetting Type Conference Article
Year 2018 Publication 24th International Conference on Pattern Recognition Abbreviated Journal
Volume Issue Pages 2262-2268
Keywords
Abstract In this paper we propose an approach to avoiding catastrophic forgetting in sequential task learning scenarios. Our technique is based on a network reparameterization that approximately diagonalizes the Fisher Information Matrix of the network parameters. This reparameterization takes the form of
a factorized rotation of parameter space which, when used in conjunction with Elastic Weight Consolidation (which assumes a diagonal Fisher Information Matrix), leads to significantly better performance on lifelong learning of sequential tasks. Experimental results on the MNIST, CIFAR-100, CUB-200 and
Stanford-40 datasets demonstrate that we significantly improve the results of standard elastic weight consolidation, and that we obtain competitive results when compared to the state-of-the-art in lifelong learning without forgetting.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICPR
Notes (down) LAMP; ADAS; 601.305; 601.109; 600.124; 600.106; 602.200; 600.120; 600.118 Approved no
Call Number Admin @ si @ LMH2018 Serial 3160
Permanent link to this record
 

 
Author Marc Masana; Idoia Ruiz; Joan Serrat; Joost Van de Weijer; Antonio Lopez
Title Metric Learning for Novelty and Anomaly Detection Type Conference Article
Year 2018 Publication 29th British Machine Vision Conference Abbreviated Journal
Volume Issue Pages
Keywords
Abstract When neural networks process images which do not resemble the distribution seen during training, so called out-of-distribution images, they often make wrong predictions, and do so too confidently. The capability to detect out-of-distribution images is therefore crucial for many real-world applications. We divide out-of-distribution detection between novelty detection ---images of classes which are not in the training set but are related to those---, and anomaly detection ---images with classes which are unrelated to the training set. By related we mean they contain the same type of objects, like digits in MNIST and SVHN. Most existing work has focused on anomaly detection, and has addressed this problem considering networks trained with the cross-entropy loss. Differently from them, we propose to use metric learning which does not have the drawback of the softmax layer (inherent to cross-entropy methods), which forces the network to divide its prediction power over the learned classes. We perform extensive experiments and evaluate both novelty and anomaly detection, even in a relevant application such as traffic sign recognition, obtaining comparable or better results than previous works.
Address Newcastle; uk; September 2018
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference BMVC
Notes (down) LAMP; ADAS; 601.305; 600.124; 600.106; 602.200; 600.120; 600.118 Approved no
Call Number Admin @ si @ MRS2018 Serial 3156
Permanent link to this record