|
Senmao Li, Joost Van de Weijer, Yaxing Wang, Fahad Shahbaz Khan, Meiqin Liu, & Jian Yang. (2023). 3D-Aware Multi-Class Image-to-Image Translation with NeRFs. In 36th IEEE Conference on Computer Vision and Pattern Recognition (pp. 12652–12662).
Abstract: Recent advances in 3D-aware generative models (3D-aware GANs) combined with Neural Radiance Fields (NeRF) have achieved impressive results. However no prior works investigate 3D-aware GANs for 3D consistent multiclass image-to-image (3D-aware 121) translation. Naively using 2D-121 translation methods suffers from unrealistic shape/identity change. To perform 3D-aware multiclass 121 translation, we decouple this learning process into a multiclass 3D-aware GAN step and a 3D-aware 121 translation step. In the first step, we propose two novel techniques: a new conditional architecture and an effective training strategy. In the second step, based on the well-trained multiclass 3D-aware GAN architecture, that preserves view-consistency, we construct a 3D-aware 121 translation system. To further reduce the view-consistency problems, we propose several new techniques, including a U-net-like adaptor network design, a hierarchical representation constrain and a relative regularization loss. In exten-sive experiments on two datasets, quantitative and qualitative results demonstrate that we successfully perform 3D-aware 121 translation with multi-view consistency. Code is available in 3DI2I.
|
|
|
Albin Soutif, Antonio Carta, & Joost Van de Weijer. (2023). Improving Online Continual Learning Performance and Stability with Temporal Ensembles. In 2nd Conference on Lifelong Learning Agents.
Abstract: Neural networks are very effective when trained on large datasets for a large number of iterations. However, when they are trained on non-stationary streams of data and in an online fashion, their performance is reduced (1) by the online setup, which limits the availability of data, (2) due to catastrophic forgetting because of the non-stationary nature of the data. Furthermore, several recent works (Caccia et al., 2022; Lange et al., 2023) arXiv:2205.13452 showed that replay methods used in continual learning suffer from the stability gap, encountered when evaluating the model continually (rather than only on task boundaries). In this article, we study the effect of model ensembling as a way to improve performance and stability in online continual learning. We notice that naively ensembling models coming from a variety of training tasks increases the performance in online continual learning considerably. Starting from this observation, and drawing inspirations from semi-supervised learning ensembling methods, we use a lightweight temporal ensemble that computes the exponential moving average of the weights (EMA) at test time, and show that it can drastically increase the performance and stability when used in combination with several methods from the literature.
|
|
|
Dipam Goswami, Yuyang Liu, Bartlomiej Twardowski, & Joost Van de Weijer. (2023). FeCAM: Exploiting the Heterogeneity of Class Distributions in Exemplar-Free Continual Learning. In 37th Annual Conference on Neural Information Processing Systems.
|
|
|
Kai Wang, Fei Yang, Shiqi Yang, Muhammad Atif Butt, & Joost Van de Weijer. (2023). Dynamic Prompt Learning: Addressing Cross-Attention Leakage for Text-Based Image Editing. In 37th Annual Conference on Neural Information Processing Systems.
|
|
|
ChuanMing Fang, Kai Wang, & Joost Van de Weijer. (2023). IterInv: Iterative Inversion for Pixel-Level T2I Models. In 37th Annual Conference on Neural Information Processing Systems.
Abstract: Large-scale text-to-image diffusion models have been a ground-breaking development in generating convincing images following an input text prompt. The goal of image editing research is to give users control over the generated images by modifying the text prompt. Current image editing techniques are relying on DDIM inversion as a common practice based on the Latent Diffusion Models (LDM). However, the large pretrained T2I models working on the latent space as LDM suffer from losing details due to the first compression stage with an autoencoder mechanism. Instead, another mainstream T2I pipeline working on the pixel level, such as Imagen and DeepFloyd-IF, avoids this problem. They are commonly composed of several stages, normally with a text-to-image stage followed by several super-resolution stages. In this case, the DDIM inversion is unable to find the initial noise to generate the original image given that the super-resolution diffusion models are not compatible with the DDIM technique. According to our experimental findings, iteratively concatenating the noisy image as the condition is the root of this problem. Based on this observation, we develop an iterative inversion (IterInv) technique for this stream of T2I models and verify IterInv with the open-source DeepFloyd-IF model. By combining our method IterInv with a popular image editing method, we prove the application prospects of IterInv. The code will be released at \url{this https URL}.
|
|
|
Albin Soutif, Antonio Carta, Andrea Cossu, Julio Hurtado, Hamed Hemati, Vincenzo Lomonaco, et al. (2023). A Comprehensive Empirical Evaluation on Online Continual Learning. In Visual Continual Learning (ICCV-W).
Abstract: Online continual learning aims to get closer to a live learning experience by learning directly on a stream of data with temporally shifting distribution and by storing a minimum amount of data from that stream. In this empirical evaluation, we evaluate various methods from the literature that tackle online continual learning. More specifically, we focus on the class-incremental setting in the context of image classification, where the learner must learn new classes incrementally from a stream of data. We compare these methods on the Split-CIFAR100 and Split-TinyImagenet benchmarks, and measure their average accuracy, forgetting, stability, and quality of the representations, to evaluate various aspects of the algorithm at the end but also during the whole training period. We find that most methods suffer from stability and underfitting issues. However, the learned representations are comparable to i.i.d. training under the same computational budget. No clear winner emerges from the results and basic experience replay, when properly tuned and implemented, is a very strong baseline. We release our modular and extensible codebase at this https URL based on the avalanche framework to reproduce our results and encourage future research.
|
|
|
Fei Yang, Kai Wang, & Joost Van de Weijer. (2023). ScrollNet: DynamicWeight Importance for Continual Learning. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops (pp. 3345–3355).
Abstract: The principle underlying most existing continual learning (CL) methods is to prioritize stability by penalizing changes in parameters crucial to old tasks, while allowing for plasticity in other parameters. The importance of weights for each task can be determined either explicitly through learning a task-specific mask during training (e.g., parameter isolation-based approaches) or implicitly by introducing a regularization term (e.g., regularization-based approaches). However, all these methods assume that the importance of weights for each task is unknown prior to data exposure. In this paper, we propose ScrollNet as a scrolling neural network for continual learning. ScrollNet can be seen as a dynamic network that assigns the ranking of weight importance for each task before data exposure, thus achieving a more favorable stability-plasticity tradeoff during sequential task learning by reassigning this ranking for different tasks. Additionally, we demonstrate that ScrollNet can be combined with various CL methods, including regularization-based and replay-based approaches. Experimental results on CIFAR100 and TinyImagenet datasets show the effectiveness of our proposed method.
|
|
|
Yuyang Liu, Yang Cong, Dipam Goswami, Xialei Liu, & Joost Van de Weijer. (2023). Augmented Box Replay: Overcoming Foreground Shift for Incremental Object Detection. In 20th IEEE International Conference on Computer Vision (pp. 11367–11377).
Abstract: In incremental learning, replaying stored samples from previous tasks together with current task samples is one of the most efficient approaches to address catastrophic forgetting. However, unlike incremental classification, image replay has not been successfully applied to incremental object detection (IOD). In this paper, we identify the overlooked problem of foreground shift as the main reason for this. Foreground shift only occurs when replaying images of previous tasks and refers to the fact that their background might contain foreground objects of the current task. To overcome this problem, a novel and efficient Augmented Box Replay (ABR) method is developed that only stores and replays foreground objects and thereby circumvents the foreground shift problem. In addition, we propose an innovative Attentive RoI Distillation loss that uses spatial attention from region-of-interest (RoI) features to constrain current model to focus on the most important information from old model. ABR significantly reduces forgetting of previous classes while maintaining high plasticity in current classes. Moreover, it considerably reduces the storage requirements when compared to standard image replay. Comprehensive experiments on Pascal-VOC and COCO datasets support the state-of-the-art performance of our model.
|
|
|
Marco Cotogni, Fei Yang, Claudio Cusano, Andrew Bagdanov, & Joost Van de Weijer. (2023). Exemplar-free Continual Learning of Vision Transformers via Gated Class-Attention and Cascaded Feature Drift Compensation.
Abstract: We propose a new method for exemplar-free class incremental training of ViTs. The main challenge of exemplar-free continual learning is maintaining plasticity of the learner without causing catastrophic forgetting of previously learned tasks. This is often achieved via exemplar replay which can help recalibrate previous task classifiers to the feature drift which occurs when learning new tasks. Exemplar replay, however, comes at the cost of retaining samples from previous tasks which for many applications may not be possible. To address the problem of continual ViT training, we first propose gated class-attention to minimize the drift in the final ViT transformer block. This mask-based gating is applied to class-attention mechanism of the last transformer block and strongly regulates the weights crucial for previous tasks. Importantly, gated class-attention does not require the task-ID during inference, which distinguishes it from other parameter isolation methods. Secondly, we propose a new method of feature drift compensation that accommodates feature drift in the backbone when learning new tasks. The combination of gated class-attention and cascaded feature drift compensation allows for plasticity towards new tasks while limiting forgetting of previous ones. Extensive experiments performed on CIFAR-100, Tiny-ImageNet and ImageNet100 demonstrate that our exemplar-free method obtains competitive results when compared to rehearsal based ViT methods.
|
|
|
Javad Zolfaghari Bengar, Joost Van de Weijer, Bartlomiej Twardowski, & Bogdan Raducanu. (2021). Reducing Label Effort: Self- Supervised Meets Active Learning. In International Conference on Computer Vision Workshops (pp. 1631–1639).
Abstract: Active learning is a paradigm aimed at reducing the annotation effort by training the model on actively selected informative and/or representative samples. Another paradigm to reduce the annotation effort is self-training that learns from a large amount of unlabeled data in an unsupervised way and fine-tunes on few labeled samples. Recent developments in self-training have achieved very impressive results rivaling supervised learning on some datasets. The current work focuses on whether the two paradigms can benefit from each other. We studied object recognition datasets including CIFAR10, CIFAR100 and Tiny ImageNet with several labeling budgets for the evaluations. Our experiments reveal that self-training is remarkably more efficient than active learning at reducing the labeling effort, that for a low labeling budget, active learning offers no benefit to self-training, and finally that the combination of active learning and self-training is fruitful when the labeling budget is high. The performance gap between active learning trained either with self-training or from scratch diminishes as we approach to the point where almost half of the dataset is labeled.
|
|
|
Javad Zolfaghari Bengar, Bogdan Raducanu, & Joost Van de Weijer. (2021). When Deep Learners Change Their Mind: Learning Dynamics for Active Learning. In 19th International Conference on Computer Analysis of Images and Patterns (Vol. 13052, pp. 403–413).
Abstract: Active learning aims to select samples to be annotated that yield the largest performance improvement for the learning algorithm. Many methods approach this problem by measuring the informativeness of samples and do this based on the certainty of the network predictions for samples. However, it is well-known that neural networks are overly confident about their prediction and are therefore an untrustworthy source to assess sample informativeness. In this paper, we propose a new informativeness-based active learning method. Our measure is derived from the learning dynamics of a neural network. More precisely we track the label assignment of the unlabeled data pool during the training of the algorithm. We capture the learning dynamics with a metric called label-dispersion, which is low when the network consistently assigns the same label to the sample during the training of the network and high when the assigned label changes frequently. We show that label-dispersion is a promising predictor of the uncertainty of the network, and show on two benchmark datasets that an active learning algorithm based on label-dispersion obtains excellent results.
|
|
|
Akshita Gupta, Sanath Narayan, Salman Khan, Fahad Shahbaz Khan, Ling Shao, & Joost Van de Weijer. (2023). Generative Multi-Label Zero-Shot Learning. TPAMI - IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(12), 14611–14624.
Abstract: Multi-label zero-shot learning strives to classify images into multiple unseen categories for which no data is available during training. The test samples can additionally contain seen categories in the generalized variant. Existing approaches rely on learning either shared or label-specific attention from the seen classes. Nevertheless, computing reliable attention maps for unseen classes during inference in a multi-label setting is still a challenge. In contrast, state-of-the-art single-label generative adversarial network (GAN) based approaches learn to directly synthesize the class-specific visual features from the corresponding class attribute embeddings. However, synthesizing multi-label features from GANs is still unexplored in the context of zero-shot setting. When multiple objects occur jointly in a single image, a critical question is how to effectively fuse multi-class information. In this work, we introduce different fusion approaches at the attribute-level, feature-level and cross-level (across attribute and feature-levels) for synthesizing multi-label features from their corresponding multi-label class embeddings. To the best of our knowledge, our work is the first to tackle the problem of multi-label feature synthesis in the (generalized) zero-shot setting. Our cross-level fusion-based generative approach outperforms the state-of-the-art on three zero-shot benchmarks: NUS-WIDE, Open Images and MS COCO. Furthermore, we show the generalization capabilities of our fusion approach in the zero-shot detection task on MS COCO, achieving favorable performance against existing methods.
Keywords: Generalized zero-shot learning; Multi-label classification; Zero-shot object detection; Feature synthesis
|
|
|
Shiqi Yang, Yaxing Wang, Kai Wang, Shangling Jui, & Joost Van de Weijer. (2022). One Ring to Bring Them All: Towards Open-Set Recognition under Domain Shift.
Abstract: In this paper, we investigate model adaptation under domain and category shift, where the final goal is to achieve
(SF-UNDA), which addresses the situation where there exist both domain and category shifts between source and target domains. Under the SF-UNDA setting, the model cannot access source data anymore during target adaptation, which aims to address data privacy concerns. We propose a novel training scheme to learn a (
+1)-way classifier to predict the
source classes and the unknown class, where samples of only known source categories are available for training. Furthermore, for target adaptation, we simply adopt a weighted entropy minimization to adapt the source pretrained model to the unlabeled target domain without source data. In experiments, we show:
After source training, the resulting source model can get excellent performance for
;
After target adaptation, our method surpasses current UNDA approaches which demand source data during adaptation. The versatility to several different tasks strongly proves the efficacy and generalization ability of our method.
When augmented with a closed-set domain adaptation approach during target adaptation, our source-free method further outperforms the current state-of-the-art UNDA method by 2.5%, 7.2% and 13% on Office-31, Office-Home and VisDA respectively.
|
|
|
Marco Cotogni, Fei Yang, Claudio Cusano, Andrew Bagdanov, & Joost Van de Weijer. (2022). Gated Class-Attention with Cascaded Feature Drift Compensation for Exemplar-free Continual Learning of Vision Transformers.
Abstract: We propose a new method for exemplar-free class incremental training of ViTs. The main challenge of exemplar-free continual learning is maintaining plasticity of the learner without causing catastrophic forgetting of previously learned tasks. This is often achieved via exemplar replay which can help recalibrate previous task classifiers to the feature drift which occurs when learning new tasks. Exemplar replay, however, comes at the cost of retaining samples from previous tasks which for many applications may not be possible. To address the problem of continual ViT training, we first propose gated class-attention to minimize the drift in the final ViT transformer block. This mask-based gating is applied to class-attention mechanism of the last transformer block and strongly regulates the weights crucial for previous tasks. Importantly, gated class-attention does not require the task-ID during inference, which distinguishes it from other parameter isolation methods. Secondly, we propose a new method of feature drift compensation that accommodates feature drift in the backbone when learning new tasks. The combination of gated class-attention and cascaded feature drift compensation allows for plasticity towards new tasks while limiting forgetting of previous ones. Extensive experiments performed on CIFAR-100, Tiny-ImageNet and ImageNet100 demonstrate that our exemplar-free method obtains competitive results when compared to rehearsal based ViT methods.
Keywords: Marco Cotogni, Fei Yang, Claudio Cusano, Andrew D. Bagdanov, Joost van de Weijer
|
|
|
Lu Yu, Lichao Zhang, Joost Van de Weijer, Fahad Shahbaz Khan, Yongmei Cheng, & C. Alejandro Parraga. (2018). Beyond Eleven Color Names for Image Understanding. MVAP - Machine Vision and Applications, 29(2), 361–373.
Abstract: Color description is one of the fundamental problems of image understanding. One of the popular ways to represent colors is by means of color names. Most existing work on color names focuses on only the eleven basic color terms of the English language. This could be limiting the discriminative power of these representations, and representations based on more color names are expected to perform better. However, there exists no clear strategy to choose additional color names. We collect a dataset of 28 additional color names. To ensure that the resulting color representation has high discriminative power we propose a method to order the additional color names according to their complementary nature with the basic color names. This allows us to compute color name representations with high discriminative power of arbitrary length. In the experiments we show that these new color name descriptors outperform the existing color name descriptor on the task of visual tracking, person re-identification and image classification.
Keywords: Color name; Discriminative descriptors; Image classification; Re-identification; Tracking
|
|
|
Eduardo Aguilar, Bogdan Raducanu, Petia Radeva, & Joost Van de Weijer. (2023). Continual Evidential Deep Learning for Out-of-Distribution Detection. In IEEE/CVF International Conference on Computer Vision (ICCV) Workshops -Visual Continual Learning workshop (pp. 3444–3454).
Abstract: Uncertainty-based deep learning models have attracted a great deal of interest for their ability to provide accurate and reliable predictions. Evidential deep learning stands out achieving remarkable performance in detecting out-of-distribution (OOD) data with a single deterministic neural network. Motivated by this fact, in this paper we propose the integration of an evidential deep learning method into a continual learning framework in order to perform simultaneously incremental object classification and OOD detection. Moreover, we analyze the ability of vacuity and dissonance to differentiate between in-distribution data belonging to old classes and OOD data. The proposed method, called CEDL, is evaluated on CIFAR-100 considering two settings consisting of 5 and 10 tasks, respectively. From the obtained results, we could appreciate that the proposed method, in addition to provide comparable results in object classification with respect to the baseline, largely outperforms OOD detection compared to several posthoc methods on three evaluation metrics: AUROC, AUPR and FPR95.
|
|
|
Eduardo Aguilar, Bogdan Raducanu, Petia Radeva, & Joost Van de Weijer. (2023). Continual Evidential Deep Learning for Out-of-Distribution Detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops (pp. 3444–3454).
Abstract: Uncertainty-based deep learning models have attracted a great deal of interest for their ability to provide accurate and reliable predictions. Evidential deep learning stands out achieving remarkable performance in detecting out-ofdistribution (OOD) data with a single deterministic neural network. Motivated by this fact, in this paper we propose the integration of an evidential deep learning method into a continual learning framework in order to perform simultaneously incremental object classification and OOD detection. Moreover, we analyze the ability of vacuity and dissonance to differentiate between in-distribution data belonging to old classes and OOD data. The proposed method 1, called CEDL, is evaluated on CIFAR-100 considering two settings consisting of 5 and 10 tasks, respectively. From the obtained results, we could appreciate that the proposed method, in addition to provide comparable results in object classification with respect to the baseline, largely outperforms OOD detection compared to several posthoc methods on three evaluation metrics: AUROC, AUPR and FPR95.
|
|
|
Carlo Gatta, Adriana Romero, & Joost Van de Weijer. (2014). Unrolling loopy top-down semantic feedback in convolutional deep networks. In Workshop on Deep Vision: Deep Learning for Computer Vision (pp. 498–505).
Abstract: In this paper, we propose a novel way to perform top-down semantic feedback in convolutional deep networks for efficient and accurate image parsing. We also show how to add global appearance/semantic features, which have shown to improve image parsing performance in state-of-the-art methods, and was not present in previous convolutional approaches. The proposed method is characterised by an efficient training and a sufficiently fast testing. We use the well known SIFTflow dataset to numerically show the advantages provided by our contributions, and to compare with state-of-the-art image parsing convolutional based approaches.
|
|