|   | 
Details
   web
Records
Author M. Cruz; Cristhian A. Aguilera-Carrasco; Boris X. Vintimilla; Ricardo Toledo; Angel Sappa
Title Cross-spectral image registration and fusion: an evaluation study Type Conference Article
Year 2015 Publication 2nd International Conference on Machine Vision and Machine Learning Abbreviated Journal
Volume Issue Pages
Keywords multispectral imaging; image registration; data fusion; infrared and visible spectra
Abstract This paper presents a preliminary study on the registration and fusion of cross-spectral imaging. The objective is to evaluate the validity of widely used computer vision approaches when they are applied at different
spectral bands. In particular, we are interested in merging images from the infrared (both long wave infrared: LWIR and near infrared: NIR) and visible spectrum (VS). Experimental results with different data sets are presented.
Address Barcelona; July 2015
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference MVML
Notes (down) ADAS; 600.076 Approved no
Call Number Admin @ si @ CAV2015 Serial 2629
Permanent link to this record
 

 
Author Cristhian A. Aguilera-Carrasco; Angel Sappa; Ricardo Toledo
Title LGHD: a Feature Descriptor for Matching Across Non-Linear Intensity Variations Type Conference Article
Year 2015 Publication 22th IEEE International Conference on Image Processing Abbreviated Journal
Volume Issue Pages 178 - 181
Keywords
Abstract
Address Quebec; Canada; September 2015
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICIP
Notes (down) ADAS; 600.076 Approved no
Call Number Admin @ si @ AST2015 Serial 2630
Permanent link to this record
 

 
Author Jiaolong Xu
Title Domain Adaptation of Deformable Part-based Models Type Book Whole
Year 2015 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract On-board pedestrian detection is crucial for Advanced Driver Assistance Systems
(ADAS). An accurate classi cation is fundamental for vision-based pedestrian detection.
The underlying assumption for learning classi ers is that the training set and the deployment environment (testing) follow the same probability distribution regarding the features used by the classi ers. However, in practice, there are di erent reasons that can break this constancy assumption. Accordingly, reusing existing classi ers by adapting them from the previous training environment (source domain) to the new testing one (target domain) is an approach with increasing acceptance in the computer vision community. In this thesis we focus on the domain adaptation of deformable part-based models (DPMs) for pedestrian detection. As a prof of concept, we use a computer graphic based synthetic dataset, i.e. a virtual world, as the source domain, and adapt the virtual-world trained DPM detector to various real-world dataset.
We start by exploiting the maximum detection accuracy of the virtual-world
trained DPM. Even though, when operating in various real-world datasets, the virtualworld trained detector still su er from accuracy degradation due to the domain gap of virtual and real worlds. We then focus on domain adaptation of DPM. At the rst step, we consider single source and single target domain adaptation and propose two batch learning methods, namely A-SSVM and SA-SSVM. Later, we further consider leveraging multiple target (sub-)domains for progressive domain adaptation and propose a hierarchical adaptive structured SVM (HA-SSVM) for optimization. Finally, we extend HA-SSVM for the challenging online domain adaptation problem, aiming at making the detector to automatically adapt to the target domain online, without any human intervention. All of the proposed methods in this thesis do not require
revisiting source domain data. The evaluations are done on the Caltech pedestrian detection benchmark. Results show that SA-SSVM slightly outperforms A-SSVM and avoids accuracy drops as high as 15 points when comparing with a non-adapted detector. The hierarchical model learned by HA-SSVM further boosts the domain adaptation performance. Finally, the online domain adaptation method has demonstrated that it can achieve comparable accuracy to the batch learned models while not requiring manually label target domain examples. Domain adaptation for pedestrian detection is of paramount importance and a relatively unexplored area. We humbly hope the work in this thesis could provide foundations for future work in this area.
Address April 2015
Corporate Author Thesis Ph.D. thesis
Publisher Place of Publication Editor Antonio Lopez
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-943427-1-4 Medium
Area Expedition Conference
Notes (down) ADAS; 600.076 Approved no
Call Number Admin @ si @ Xu2015 Serial 2631
Permanent link to this record
 

 
Author Dennis G.Romero; Anselmo Frizera; Angel Sappa; Boris X. Vintimilla; Teodiano F.Bastos
Title A predictive model for human activity recognition by observing actions and context Type Conference Article
Year 2015 Publication Advanced Concepts for Intelligent Vision Systems, Proceedings of 16th International Conference, ACIVS 2015 Abbreviated Journal
Volume 9386 Issue Pages 323-333
Keywords
Abstract This paper presents a novel model to estimate human activities — a human activity is defined by a set of human actions. The proposed approach is based on the usage of Recurrent Neural Networks (RNN) and Bayesian inference through the continuous monitoring of human actions and its surrounding environment. In the current work human activities are inferred considering not only visual analysis but also additional resources; external sources of information, such as context information, are incorporated to contribute to the activity estimation. The novelty of the proposed approach lies in the way the information is encoded, so that it can be later associated according to a predefined semantic structure. Hence, a pattern representing a given activity can be defined by a set of actions, plus contextual information or other kind of information that could be relevant to describe the activity. Experimental results with real data are provided showing the validity of the proposed approach.
Address Catania; Italy; October 2015
Corporate Author Thesis
Publisher Springer International Publishing Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN 0302-9743 ISBN 978-3-319-25902-4 Medium
Area Expedition Conference ACIVS
Notes (down) ADAS; 600.076 Approved no
Call Number Admin @ si @ RFS2015 Serial 2661
Permanent link to this record
 

 
Author Miguel Oliveira; L. Seabra Lopes; G. Hyun Lim; S. Hamidreza Kasaei; Angel Sappa; A. Tom
Title Concurrent Learning of Visual Codebooks and Object Categories in Openended Domains Type Conference Article
Year 2015 Publication International Conference on Intelligent Robots and Systems Abbreviated Journal
Volume Issue Pages 2488 - 2495
Keywords Visual Learning; Computer Vision; Autonomous Agents
Abstract In open-ended domains, robots must continuously learn new object categories. When the training sets are created offline, it is not possible to ensure their representativeness with respect to the object categories and features the system will find when operating online. In the Bag of Words model, visual codebooks are constructed from training sets created offline. This might lead to non-discriminative visual words and, as a consequence, to poor recognition performance. This paper proposes a visual object recognition system which concurrently learns in an incremental and online fashion both the visual object category representations as well as the codebook words used to encode them. The codebook is defined using Gaussian Mixture Models which are updated using new object views. The approach contains similarities with the human visual object recognition system: evidence suggests that the development of recognition capabilities occurs on multiple levels and is sustained over large periods of time. Results show that the proposed system with concurrent learning of object categories and codebooks is capable of learning more categories, requiring less examples, and with similar accuracies, when compared to the classical Bag of Words approach using offline constructed codebooks.
Address Hamburg; Germany; October 2015
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference IROS
Notes (down) ADAS; 600.076 Approved no
Call Number Admin @ si @ OSL2015 Serial 2664
Permanent link to this record
 

 
Author Alejandro Gonzalez Alzate
Title Multi-modal Pedestrian Detection Type Book Whole
Year 2015 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Pedestrian detection continues to be an extremely challenging problem in real scenarios, in which situations like illumination changes, noisy images, unexpected objects, uncontrolled scenarios and variant appearance of objects occur constantly. All these problems force the development of more robust detectors for relevant applications like vision-based autonomous vehicles, intelligent surveillance, and pedestrian tracking for behavior analysis. Most reliable vision-based pedestrian detectors base their decision on features extracted using a single sensor capturing complementary features, e.g., appearance, and texture. These features usually are extracted from the current frame, ignoring temporal information, or including it in a post process step e.g., tracking or temporal coherence. Taking into account these issues we formulate the following question: can we generate more robust pedestrian detectors by introducing new information sources in the feature extraction step?
In order to answer this question we develop different approaches for introducing new information sources to well-known pedestrian detectors. We start by the inclusion of temporal information following the Stacked Sequential Learning (SSL) paradigm which suggests that information extracted from the neighboring samples in a sequence can improve the accuracy of a base classifier.
We then focus on the inclusion of complementary information from different sensors like 3D point clouds (LIDAR – depth), far infrared images (FIR), or disparity maps (stereo pair cameras). For this end we develop a multi-modal framework in which information from different sensors is used for increasing detection accuracy (by increasing information redundancy). Finally we propose a multi-view pedestrian detector, this multi-view approach splits the detection problem in n sub-problems.
Each sub-problem will detect objects in a given specific view reducing in that way the variability problem faced when a single detectors is used for the whole problem. We show that these approaches obtain competitive results with other state-of-the-art methods but instead of design new features, we reuse existing ones boosting their performance.
Address November 2015
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor David Vazquez;Antonio Lopez;
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-943427-7-6 Medium
Area Expedition Conference
Notes (down) ADAS; 600.076 Approved no
Call Number Admin @ si @ Gon2015 Serial 2706
Permanent link to this record
 

 
Author Aura Hernandez-Sabate; Meritxell Joanpere; Nuria Gorgorio; Lluis Albarracin
Title Mathematics learning opportunities when playing a Tower Defense Game Type Journal
Year 2015 Publication International Journal of Serious Games Abbreviated Journal IJSG
Volume 2 Issue 4 Pages 57-71
Keywords Tower Defense game; learning opportunities; mathematics; problem solving; game design
Abstract A qualitative research study is presented herein with the purpose of identifying mathematics learning opportunities in students between 10 and 12 years old while playing a commercial version of a Tower Defense game. These learning opportunities are understood as mathematicisable moments of the game and involve the establishment of relationships between the game and mathematical problem solving. Based on the analysis of these mathematicisable moments, we conclude that the game can promote problem-solving processes and learning opportunities that can be associated with different mathematical contents that appears in mathematics curricula, thought it seems that teacher or new game elements might be needed to facilitate the processes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (down) ADAS; 600.076 Approved no
Call Number Admin @ si @ HJG2015 Serial 2730
Permanent link to this record
 

 
Author Joan Serrat; Felipe Lumbreras; Antonio Lopez
Title Cost estimation of custom hoses from STL files and CAD drawings Type Journal Article
Year 2013 Publication Computers in Industry Abbreviated Journal COMPUTIND
Volume 64 Issue 3 Pages 299-309
Keywords On-line quotation; STL format; Regression; Gaussian process
Abstract We present a method for the cost estimation of custom hoses from CAD models. They can come in two formats, which are easy to generate: a STL file or the image of a CAD drawing showing several orthogonal projections. The challenges in either cases are, first, to obtain from them a high level 3D description of the shape, and second, to learn a regression function for the prediction of the manufacturing time, based on geometric features of the reconstructed shape. The chosen description is the 3D line along the medial axis of the tube and the diameter of the circular sections along it. In order to extract it from STL files, we have adapted RANSAC, a robust parametric fitting algorithm. As for CAD drawing images, we propose a new technique for 3D reconstruction from data entered on any number of orthogonal projections. The regression function is a Gaussian process, which does not constrain the function to adopt any specific form and is governed by just two parameters. We assess the accuracy of the manufacturing time estimation by k-fold cross validation on 171 STL file models for which the time is provided by an expert. The results show the feasibility of the method, whereby the relative error for 80% of the testing samples is below 15%.
Address
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (down) ADAS; 600.057; 600.054; 605.203 Approved no
Call Number Admin @ si @ SLL2013; ADAS @ adas @ Serial 2161
Permanent link to this record
 

 
Author David Vazquez; Antonio Lopez; Daniel Ponsa; David Geronimo
Title Interactive Training of Human Detectors Type Book Chapter
Year 2013 Publication Multiodal Interaction in Image and Video Applications Abbreviated Journal
Volume 48 Issue Pages 169-182
Keywords Pedestrian Detection; Virtual World; AdaBoost; Domain Adaptation
Abstract Image based human detection remains as a challenging problem. Most promising detectors rely on classifiers trained with labelled samples. However, labelling is a manual labor intensive step. To overcome this problem we propose to collect images of pedestrians from a virtual city, i.e., with automatic labels, and train a pedestrian detector with them, which works fine when such virtual-world data are similar to testing one, i.e., real-world pedestrians in urban areas. When testing data is acquired in different conditions than training one, e.g., human detection in personal photo albums, dataset shift appears. In previous work, we cast this problem as one of domain adaptation and solve it with an active learning procedure. In this work, we focus on the same problem but evaluating a different set of faster to compute features, i.e., Haar, EOH and their combination. In particular, we train a classifier with virtual-world data, using such features and Real AdaBoost as learning machine. This classifier is applied to real-world training images. Then, a human oracle interactively corrects the wrong detections, i.e., few miss detections are manually annotated and some false ones are pointed out too. A low amount of manual annotation is fixed as restriction. Real- and virtual-world difficult samples are combined within what we call cool world and we retrain the classifier with this data. Our experiments show that this adapted classifier is equivalent to the one trained with only real-world data but requiring 90% less manual annotations.
Address Springer Heidelberg New York Dordrecht London
Corporate Author Thesis
Publisher Springer Berlin Heidelberg Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1868-4394 ISBN 978-3-642-35931-6 Medium
Area Expedition Conference
Notes (down) ADAS; 600.057; 600.054; 605.203 Approved no
Call Number VLP2013; ADAS @ adas @ vlp2013 Serial 2193
Permanent link to this record
 

 
Author Jiaolong Xu; Sebastian Ramos; David Vazquez; Antonio Lopez
Title Domain Adaptation of Deformable Part-Based Models Type Journal Article
Year 2014 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI
Volume 36 Issue 12 Pages 2367-2380
Keywords Domain Adaptation; Pedestrian Detection
Abstract The accuracy of object classifiers can significantly drop when the training data (source domain) and the application scenario (target domain) have inherent differences. Therefore, adapting the classifiers to the scenario in which they must operate is of paramount importance. We present novel domain adaptation (DA) methods for object detection. As proof of concept, we focus on adapting the state-of-the-art deformable part-based model (DPM) for pedestrian detection. We introduce an adaptive structural SVM (A-SSVM) that adapts a pre-learned classifier between different domains. By taking into account the inherent structure in feature space (e.g., the parts in a DPM), we propose a structure-aware A-SSVM (SA-SSVM). Neither A-SSVM nor SA-SSVM needs to revisit the source-domain training data to perform the adaptation. Rather, a low number of target-domain training examples (e.g., pedestrians) are used. To address the scenario where there are no target-domain annotated samples, we propose a self-adaptive DPM based on a self-paced learning (SPL) strategy and a Gaussian Process Regression (GPR). Two types of adaptation tasks are assessed: from both synthetic pedestrians and general persons (PASCAL VOC) to pedestrians imaged from an on-board camera. Results show that our proposals avoid accuracy drops as high as 15 points when comparing adapted and non-adapted detectors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0162-8828 ISBN Medium
Area Expedition Conference
Notes (down) ADAS; 600.057; 600.054; 601.217; 600.076 Approved no
Call Number ADAS @ adas @ XRV2014b Serial 2436
Permanent link to this record
 

 
Author Jiaolong Xu; Sebastian Ramos;David Vazquez; Antonio Lopez
Title Cost-sensitive Structured SVM for Multi-category Domain Adaptation Type Conference Article
Year 2014 Publication 22nd International Conference on Pattern Recognition Abbreviated Journal
Volume Issue Pages 3886 - 3891
Keywords Domain Adaptation; Pedestrian Detection
Abstract Domain adaptation addresses the problem of accuracy drop that a classifier may suffer when the training data (source domain) and the testing data (target domain) are drawn from different distributions. In this work, we focus on domain adaptation for structured SVM (SSVM). We propose a cost-sensitive domain adaptation method for SSVM, namely COSS-SSVM. In particular, during the re-training of an adapted classifier based on target and source data, the idea that we explore consists in introducing a non-zero cost even for correctly classified source domain samples. Eventually, we aim to learn a more targetoriented classifier by not rewarding (zero loss) properly classified source-domain training samples. We assess the effectiveness of COSS-SSVM on multi-category object recognition.
Address Stockholm; Sweden; August 2014
Corporate Author Thesis
Publisher IEEE Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-4651 ISBN Medium
Area Expedition Conference ICPR
Notes (down) ADAS; 600.057; 600.054; 601.217; 600.076 Approved no
Call Number ADAS @ adas @ XRV2014a Serial 2434
Permanent link to this record
 

 
Author David Vazquez; Javier Marin; Antonio Lopez; Daniel Ponsa; David Geronimo
Title Virtual and Real World Adaptation for Pedestrian Detection Type Journal Article
Year 2014 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI
Volume 36 Issue 4 Pages 797-809
Keywords Domain Adaptation; Pedestrian Detection
Abstract Pedestrian detection is of paramount interest for many applications. Most promising detectors rely on discriminatively learnt classifiers, i.e., trained with annotated samples. However, the annotation step is a human intensive and subjective task worth to be minimized. By using virtual worlds we can automatically obtain precise and rich annotations. Thus, we face the question: can a pedestrian appearance model learnt in realistic virtual worlds work successfully for pedestrian detection in realworld images?. Conducted experiments show that virtual-world based training can provide excellent testing accuracy in real world, but it can also suffer the dataset shift problem as real-world based training does. Accordingly, we have designed a domain adaptation framework, V-AYLA, in which we have tested different techniques to collect a few pedestrian samples from the target domain (real world) and combine them with the many examples of the source domain (virtual world) in order to train a domain adapted pedestrian classifier that will operate in the target domain. V-AYLA reports the same detection accuracy than when training with many human-provided pedestrian annotations and testing with real-world images of the same domain. To the best of our knowledge, this is the first work demonstrating adaptation of virtual and real worlds for developing an object detector.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0162-8828 ISBN Medium
Area Expedition Conference
Notes (down) ADAS; 600.057; 600.054; 600.076 Approved no
Call Number ADAS @ adas @ VML2014 Serial 2275
Permanent link to this record
 

 
Author Alejandro Gonzalez Alzate; Sebastian Ramos; David Vazquez; Antonio Lopez; Jaume Amores
Title Spatiotemporal Stacked Sequential Learning for Pedestrian Detection Type Conference Article
Year 2015 Publication Pattern Recognition and Image Analysis, Proceedings of 7th Iberian Conference , ibPRIA 2015 Abbreviated Journal
Volume Issue Pages 3-12
Keywords SSL; Pedestrian Detection
Abstract Pedestrian classifiers decide which image windows contain a pedestrian. In practice, such classifiers provide a relatively high response at neighbor windows overlapping a pedestrian, while the responses around potential false positives are expected to be lower. An analogous reasoning applies for image sequences. If there is a pedestrian located within a frame, the same pedestrian is expected to appear close to the same location in neighbor frames. Therefore, such a location has chances of receiving high classification scores during several frames, while false positives are expected to be more spurious. In this paper we propose to exploit such correlations for improving the accuracy of base pedestrian classifiers. In particular, we propose to use two-stage classifiers which not only rely on the image descriptors required by the base classifiers but also on the response of such base classifiers in a given spatiotemporal neighborhood. More specifically, we train pedestrian classifiers using a stacked sequential learning (SSL) paradigm. We use a new pedestrian dataset we have acquired from a car to evaluate our proposal at different frame rates. We also test on a well known dataset: Caltech. The obtained results show that our SSL proposal boosts detection accuracy significantly with a minimal impact on the computational cost. Interestingly, SSL improves more the accuracy at the most dangerous situations, i.e. when a pedestrian is close to the camera.
Address Santiago de Compostela; España; June 2015
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area ACDC Expedition Conference IbPRIA
Notes (down) ADAS; 600.057; 600.054; 600.076 Approved no
Call Number GRV2015; ADAS @ adas @ GRV2015 Serial 2454
Permanent link to this record
 

 
Author Jiaolong Xu; Sebastian Ramos; David Vazquez; Antonio Lopez
Title Incremental Domain Adaptation of Deformable Part-based Models Type Conference Article
Year 2014 Publication 25th British Machine Vision Conference Abbreviated Journal
Volume Issue Pages
Keywords Pedestrian Detection; Part-based models; Domain Adaptation
Abstract Nowadays, classifiers play a core role in many computer vision tasks. The underlying assumption for learning classifiers is that the training set and the deployment environment (testing) follow the same probability distribution regarding the features used by the classifiers. However, in practice, there are different reasons that can break this constancy assumption. Accordingly, reusing existing classifiers by adapting them from the previous training environment (source domain) to the new testing one (target domain)
is an approach with increasing acceptance in the computer vision community. In this paper we focus on the domain adaptation of deformable part-based models (DPMs) for object detection. In particular, we focus on a relatively unexplored scenario, i.e. incremental domain adaptation for object detection assuming weak-labeling. Therefore, our algorithm is ready to improve existing source-oriented DPM-based detectors as soon as a little amount of labeled target-domain training data is available, and keeps improving as more of such data arrives in a continuous fashion. For achieving this, we follow a multiple
instance learning (MIL) paradigm that operates in an incremental per-image basis. As proof of concept, we address the challenging scenario of adapting a DPM-based pedestrian detector trained with synthetic pedestrians to operate in real-world scenarios. The obtained results show that our incremental adaptive models obtain equally good accuracy results as the batch learned models, while being more flexible for handling continuously arriving target-domain data.
Address Nottingham; uk; September 2014
Corporate Author Thesis
Publisher BMVA Press Place of Publication Editor Valstar, Michel and French, Andrew and Pridmore, Tony
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference BMVC
Notes (down) ADAS; 600.057; 600.054; 600.076 Approved no
Call Number XRV2014c; ADAS @ adas @ xrv2014c Serial 2455
Permanent link to this record
 

 
Author Javier Marin; David Vazquez; Antonio Lopez; Jaume Amores; Bastian Leibe
Title Random Forests of Local Experts for Pedestrian Detection Type Conference Article
Year 2013 Publication 15th IEEE International Conference on Computer Vision Abbreviated Journal
Volume Issue Pages 2592 - 2599
Keywords ADAS; Random Forest; Pedestrian Detection
Abstract Pedestrian detection is one of the most challenging tasks in computer vision, and has received a lot of attention in the last years. Recently, some authors have shown the advantages of using combinations of part/patch-based detectors in order to cope with the large variability of poses and the existence of partial occlusions. In this paper, we propose a pedestrian detection method that efficiently combines multiple local experts by means of a Random Forest ensemble. The proposed method works with rich block-based representations such as HOG and LBP, in such a way that the same features are reused by the multiple local experts, so that no extra computational cost is needed with respect to a holistic method. Furthermore, we demonstrate how to integrate the proposed approach with a cascaded architecture in order to achieve not only high accuracy but also an acceptable efficiency. In particular, the resulting detector operates at five frames per second using a laptop machine. We tested the proposed method with well-known challenging datasets such as Caltech, ETH, Daimler, and INRIA. The method proposed in this work consistently ranks among the top performers in all the datasets, being either the best method or having a small difference with the best one.
Address Sydney; Australia; December 2013
Corporate Author Thesis
Publisher IEEE Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-5499 ISBN Medium
Area Expedition Conference ICCV
Notes (down) ADAS; 600.057; 600.054 Approved no
Call Number ADAS @ adas @ MVL2013 Serial 2333
Permanent link to this record