|   | 
Details
   web
Records
Author Aleksandr Setkov; Fabio Martinez Carillo; Michele Gouiffes; Christian Jacquemin; Maria Vanrell; Ramon Baldrich
Title DAcImPro: A Novel Database of Acquired Image Projections and Its Application to Object Recognition Type Conference Article
Year 2015 Publication Advances in Visual Computing. Proceedings of 11th International Symposium, ISVC 2015 Part II Abbreviated Journal
Volume 9475 Issue Pages 463-473
Keywords Projector-camera systems; Feature descriptors; Object recognition
Abstract Projector-camera systems are designed to improve the projection quality by comparing original images with their captured projections, which is usually complicated due to high photometric and geometric variations. Many research works address this problem using their own test data which makes it extremely difficult to compare different proposals. This paper has two main contributions. Firstly, we introduce a new database of acquired image projections (DAcImPro) that, covering photometric and geometric conditions and providing data for ground-truth computation, can serve to evaluate different algorithms in projector-camera systems. Secondly, a new object recognition scenario from acquired projections is presented, which could be of a great interest in such domains, as home video projections and public presentations. We show that the task is more challenging than the classical recognition problem and thus requires additional pre-processing, such as color compensation or projection area selection.
Address
Corporate Author Thesis
Publisher Springer International Publishing Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN 0302-9743 ISBN 978-3-319-27862-9 Medium
Area Expedition Conference ISVC
Notes (up) CIC Approved no
Call Number Admin @ si @ SMG2015 Serial 2736
Permanent link to this record
 

 
Author Jordi Roca
Title Constancy and inconstancy in categorical colour perception Type Book Whole
Year 2012 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract To recognise objects is perhaps the most important task an autonomous system, either biological or artificial needs to perform. In the context of human vision, this is partly achieved by recognizing the colour of surfaces despite changes in the wavelength distribution of the illumination, a property called colour constancy. Correct surface colour recognition may be adequately accomplished by colour category matching without the need to match colours precisely, therefore categorical colour constancy is likely to play an important role for object identification to be successful. The main aim of this work is to study the relationship between colour constancy and categorical colour perception. Previous studies of colour constancy have shown the influence of factors such the spatio-chromatic properties of the background, individual observer's performance, semantics, etc. However there is very little systematic study of these influences. To this end, we developed a new approach to colour constancy which includes both individual observers' categorical perception, the categorical structure of the background, and their interrelations resulting in a more comprehensive characterization of the phenomenon. In our study, we first developed a new method to analyse the categorical structure of 3D colour space, which allowed us to characterize individual categorical colour perception as well as quantify inter-individual variations in terms of shape and centroid location of 3D categorical regions. Second, we developed a new colour constancy paradigm, termed chromatic setting, which allows measuring the precise location of nine categorically-relevant points in colour space under immersive illumination. Additionally, we derived from these measurements a new colour constancy index which takes into account the magnitude and orientation of the chromatic shift, memory effects and the interrelations among colours and a model of colour naming tuned to each observer/adaptation state. Our results lead to the following conclusions: (1) There exists large inter-individual variations in the categorical structure of colour space, and thus colour naming ability varies significantly but this is not well predicted by low-level chromatic discrimination ability; (2) Analysis of the average colour naming space suggested the need for an additional three basic colour terms (turquoise, lilac and lime) for optimal colour communication; (3) Chromatic setting improved the precision of more complex linear colour constancy models and suggested that mechanisms other than cone gain might be best suited to explain colour constancy; (4) The categorical structure of colour space is broadly stable under illuminant changes for categorically balanced backgrounds; (5) Categorical inconstancy exists for categorically unbalanced backgrounds thus indicating that categorical information perceived in the initial stages of adaptation may constrain further categorical perception.
Address
Corporate Author Thesis Ph.D. thesis
Publisher Place of Publication Editor Maria Vanrell;C. Alejandro Parraga
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) CIC Approved no
Call Number Admin @ si @ Roc2012 Serial 2893
Permanent link to this record
 

 
Author Ivet Rafegas; Maria Vanrell
Title Color spaces emerging from deep convolutional networks Type Conference Article
Year 2016 Publication 24th Color and Imaging Conference Abbreviated Journal
Volume Issue Pages 225-230
Keywords
Abstract Award for the best interactive session
Defining color spaces that provide a good encoding of spatio-chromatic properties of color surfaces is an open problem in color science [8, 22]. Related to this, in computer vision the fusion of color with local image features has been studied and evaluated [16]. In human vision research, the cells which are selective to specific color hues along the visual pathway are also a focus of attention [7, 14]. In line with these research aims, in this paper we study how color is encoded in a deep Convolutional Neural Network (CNN) that has been trained on more than one million natural images for object recognition. These convolutional nets achieve impressive performance in computer vision, and rival the representations in human brain. In this paper we explore how color is represented in a CNN architecture that can give some intuition about efficient spatio-chromatic representations. In convolutional layers the activation of a neuron is related to a spatial filter, that combines spatio-chromatic representations. We use an inverted version of it to explore the properties. Using a series of unsupervised methods we classify different type of neurons depending on the color axes they define and we propose an index of color-selectivity of a neuron. We estimate the main color axes that emerge from this trained net and we prove that colorselectivity of neurons decreases from early to deeper layers.
Address San Diego; USA; November 2016
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CIC
Notes (up) CIC Approved no
Call Number Admin @ si @ RaV2016a Serial 2894
Permanent link to this record
 

 
Author Ivet Rafegas; Maria Vanrell
Title Colour Visual Coding in trained Deep Neural Networks Type Abstract
Year 2016 Publication European Conference on Visual Perception Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address Barcelona; Spain; August 2016
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ECVP
Notes (up) CIC Approved no
Call Number Admin @ si @ RaV2016b Serial 2895
Permanent link to this record
 

 
Author Ivet Rafegas
Title Color in Visual Recognition: from flat to deep representations and some biological parallelisms Type Book Whole
Year 2017 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Visual recognition is one of the main problems in computer vision that attempts to solve image understanding by deciding what objects are in images. This problem can be computationally solved by using relevant sets of visual features, such as edges, corners, color or more complex object parts. This thesis contributes to how color features have to be represented for recognition tasks.

Image features can be extracted following two different approaches. A first approach is defining handcrafted descriptors of images which is then followed by a learning scheme to classify the content (named flat schemes in Kruger et al. (2013). In this approach, perceptual considerations are habitually used to define efficient color features. Here we propose a new flat color descriptor based on the extension of color channels to boost the representation of spatio-chromatic contrast that surpasses state-of-the-art approaches. However, flat schemes present a lack of generality far away from the capabilities of biological systems. A second approach proposes evolving these flat schemes into a hierarchical process, like in the visual cortex. This includes an automatic process to learn optimal features. These deep schemes, and more specifically Convolutional Neural Networks (CNNs), have shown an impressive performance to solve various vision problems. However, there is a lack of understanding about the internal representation obtained, as a result of automatic learning. In this thesis we propose a new methodology to explore the internal representation of trained CNNs by defining the Neuron Feature as a visualization of the intrinsic features encoded in each individual neuron. Additionally, and inspired by physiological techniques, we propose to compute different neuron selectivity indexes (e.g., color, class, orientation or symmetry, amongst others) to label and classify the full CNN neuron population to understand learned representations.

Finally, using the proposed methodology, we show an in-depth study on how color is represented on a specific CNN, trained for object recognition, that competes with primate representational abilities (Cadieu et al (2014)). We found several parallelisms with biological visual systems: (a) a significant number of color selectivity neurons throughout all the layers; (b) an opponent and low frequency representation of color oriented edges and a higher sampling of frequency selectivity in brightness than in color in 1st layer like in V1; (c) a higher sampling of color hue in the second layer aligned to observed hue maps in V2; (d) a strong color and shape entanglement in all layers from basic features in shallower layers (V1 and V2) to object and background shapes in deeper layers (V4 and IT); and (e) a strong correlation between neuron color selectivities and color dataset bias.
Address November 2017
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor Maria Vanrell
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-945373-7-0 Medium
Area Expedition Conference
Notes (up) CIC Approved no
Call Number Admin @ si @ Raf2017 Serial 3100
Permanent link to this record
 

 
Author Hassan Ahmed Sial; S. Sancho; Ramon Baldrich; Robert Benavente; Maria Vanrell
Title Color-based data augmentation for Reflectance Estimation Type Conference Article
Year 2018 Publication 26th Color Imaging Conference Abbreviated Journal
Volume Issue Pages 284-289
Keywords
Abstract Deep convolutional architectures have shown to be successful frameworks to solve generic computer vision problems. The estimation of intrinsic reflectance from single image is not a solved problem yet. Encoder-Decoder architectures are a perfect approach for pixel-wise reflectance estimation, although it usually suffers from the lack of large datasets. Lack of data can be partially solved with data augmentation, however usual techniques focus on geometric changes which does not help for reflectance estimation. In this paper we propose a color-based data augmentation technique that extends the training data by increasing the variability of chromaticity. Rotation on the red-green blue-yellow plane of an opponent space enable to increase the training set in a coherent and sound way that improves network generalization capability for reflectance estimation. We perform some experiments on the Sintel dataset showing that our color-based augmentation increase performance and overcomes one of the state-of-the-art methods.
Address Vancouver; November 2018
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CIC
Notes (up) CIC Approved no
Call Number Admin @ si @ SSB2018a Serial 3129
Permanent link to this record
 

 
Author Trevor Canham; Javier Vazquez; Elise Mathieu; Marcelo Bertalmío
Title Matching visual induction effects on screens of different size Type Journal Article
Year 2021 Publication Journal of Vision Abbreviated Journal JOV
Volume 21 Issue 6(10) Pages 1-22
Keywords
Abstract In the film industry, the same movie is expected to be watched on displays of vastly different sizes, from cinema screens to mobile phones. But visual induction, the perceptual phenomenon by which the appearance of a scene region is affected by its surroundings, will be different for the same image shown on two displays of different dimensions. This phenomenon presents a practical challenge for the preservation of the artistic intentions of filmmakers, because it can lead to shifts in image appearance between viewing destinations. In this work, we show that a neural field model based on the efficient representation principle is able to predict induction effects and how, by regularizing its associated energy functional, the model is still able to represent induction but is now invertible. From this finding, we propose a method to preprocess an image in a screen–size dependent way so that its perception, in terms of visual induction, may remain constant across displays of different size. The potential of the method is demonstrated through psychophysical experiments on synthetic images and qualitative examples on natural images.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) CIC Approved no
Call Number Admin @ si @ CVM2021 Serial 3595
Permanent link to this record
 

 
Author Graham D. Finlayson; Javier Vazquez; Fufu Fang
Title The Discrete Cosine Maximum Ignorance Assumption Type Conference Article
Year 2021 Publication 29th Color and Imaging Conference Abbreviated Journal
Volume Issue Pages 13-18
Keywords
Abstract the performance of colour correction algorithms are dependent on the reflectance sets used. Sometimes, when the testing reflectance set is changed the ranking of colour correction algorithms also changes. To remove dependence on dataset we can
make assumptions about the set of all possible reflectances. In the Maximum Ignorance with Positivity (MIP) assumption we assume that all reflectances with per wavelength values between 0 and 1 are equally likely. A weakness in the MIP is that it fails to take into account the correlation of reflectance functions between
wavelengths (many of the assumed reflectances are, in reality, not possible).
In this paper, we take the view that the maximum ignorance assumption has merit but, hitherto it has been calculated with respect to the wrong coordinate basis. Here, we propose the Discrete Cosine Maximum Ignorance assumption (DCMI), where
all reflectances that have coordinates between max and min bounds in the Discrete Cosine Basis coordinate system are equally likely.
Here, the correlation between wavelengths is encoded and this results in the set of all plausible reflectances ’looking like’ typical reflectances that occur in nature. This said the DCMI model is also a superset of all measured reflectance sets.
Experiments show that, in colour correction, adopting the DCMI results in similar colour correction performance as using a particular reflectance set.
Address Virtual; November 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CIC
Notes (up) CIC Approved no
Call Number FVF2021 Serial 3596
Permanent link to this record
 

 
Author Yasuko Sugito; Trevor Canham; Javier Vazquez; Marcelo Bertalmio
Title A Study of Objective Quality Metrics for HLG-Based HDR/WCG Image Coding Type Journal
Year 2021 Publication SMPTE Motion Imaging Journal Abbreviated Journal SMPTE
Volume 130 Issue 4 Pages 53 - 65
Keywords
Abstract In this work, we study the suitability of high dynamic range, wide color gamut (HDR/WCG) objective quality metrics to assess the perceived deterioration of compressed images encoded using the hybrid log-gamma (HLG) method, which is the standard for HDR television. Several image quality metrics have been developed to deal specifically with HDR content, although in previous work we showed that the best results (i.e., better matches to the opinion of human expert observers) are obtained by an HDR metric that consists simply in applying a given standard dynamic range metric, called visual information fidelity (VIF), directly to HLG-encoded images. However, all these HDR metrics ignore the chroma components for their calculations, that is, they consider only the luminance channel. For this reason, in the current work, we conduct subjective evaluation experiments in a professional setting using compressed HDR/WCG images encoded with HLG and analyze the ability of the best HDR metric to detect perceivable distortions in the chroma components, as well as the suitability of popular color metrics (including ΔITPR , which supports parameters for HLG) to correlate with the opinion scores. Our first contribution is to show that there is a need to consider the chroma components in HDR metrics, as there are color distortions that subjects perceive but that the best HDR metric fails to detect. Our second contribution is the surprising result that VIF, which utilizes only the luminance channel, correlates much better with the subjective evaluation scores than the metrics investigated that do consider the color components.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) CIC Approved no
Call Number SCV2021 Serial 3671
Permanent link to this record
 

 
Author Hassan Ahmed Sial
Title Estimating Light Effects from a Single Image: Deep Architectures and Ground-Truth Generation Type Book Whole
Year 2021 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract In this thesis, we explore how to estimate the effects of the light interacting with the scene objects from a single image. To achieve this goal, we focus on recovering intrinsic components like reflectance, shading, or light properties such as color and position using deep architectures. The success of these approaches relies on training on large and diversified image datasets. Therefore, we present several contributions on this such as: (a) a data-augmentation technique; (b) a ground-truth for an existing multi-illuminant dataset; (c) a family of synthetic datasets, SID for Surreal Intrinsic Datasets, with diversified backgrounds and coherent light conditions; and (d) a practical pipeline to create hybrid ground-truths to overcome the complexity of acquiring realistic light conditions in a massive way. In parallel with the creation of datasets, we trained different flexible encoder-decoder deep architectures incorporating physical constraints from the image formation models.

In the last part of the thesis, we apply all the previous experience to two different problems. Firstly, we create a large hybrid Doc3DShade dataset with real shading and synthetic reflectance under complex illumination conditions, that is used to train a two-stage architecture that improves the character recognition task in complex lighting conditions of unwrapped documents. Secondly, we tackle the problem of single image scene relighting by extending both, the SID dataset to present stronger shading and shadows effects, and the deep architectures to use intrinsic components to estimate new relit images.
Address September 2021
Corporate Author Thesis Ph.D. thesis
Publisher IMPRIMA Place of Publication Editor Maria Vanrell;Ramon Baldrich
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-122714-8-5 Medium
Area Expedition Conference
Notes (up) CIC; Approved no
Call Number Admin @ si @ Sia2021 Serial 3607
Permanent link to this record
 

 
Author Joost Van de Weijer; Fahad Shahbaz Khan
Title Fusing Color and Shape for Bag-of-Words Based Object Recognition Type Conference Article
Year 2013 Publication 4th Computational Color Imaging Workshop Abbreviated Journal
Volume 7786 Issue Pages 25-34
Keywords Object Recognition; color features; bag-of-words; image classification
Abstract In this article we provide an analysis of existing methods for the incorporation of color in bag-of-words based image representations. We propose a list of desired properties on which bases fusing methods can be compared. We discuss existing methods and indicate shortcomings of the two well-known fusing methods, namely early and late fusion. Several recent works have addressed these shortcomings by exploiting top-down information in the bag-of-words pipeline: color attention which is motivated from human vision, and Portmanteau vocabularies which are based on information theoretic compression of product vocabularies. We point out several remaining challenges in cue fusion and provide directions for future research.
Address Chiba; Japan; March 2013
Corporate Author Thesis
Publisher Springer Berlin Heidelberg Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0302-9743 ISBN 978-3-642-36699-4 Medium
Area Expedition Conference CCIW
Notes (up) CIC; 600.048 Approved no
Call Number Admin @ si @ WeK2013 Serial 2283
Permanent link to this record
 

 
Author Rahat Khan; Joost Van de Weijer; Fahad Shahbaz Khan; Damien Muselet; christophe Ducottet; Cecile Barat
Title Discriminative Color Descriptors Type Conference Article
Year 2013 Publication IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal
Volume Issue Pages 2866 - 2873
Keywords
Abstract Color description is a challenging task because of large variations in RGB values which occur due to scene accidental events, such as shadows, shading, specularities, illuminant color changes, and changes in viewing geometry. Traditionally, this challenge has been addressed by capturing the variations in physics-based models, and deriving invariants for the undesired variations. The drawback of this approach is that sets of distinguishable colors in the original color space are mapped to the same value in the photometric invariant space. This results in a drop of discriminative power of the color description. In this paper we take an information theoretic approach to color description. We cluster color values together based on their discriminative power in a classification problem. The clustering has the explicit objective to minimize the drop of mutual information of the final representation. We show that such a color description automatically learns a certain degree of photometric invariance. We also show that a universal color representation, which is based on other data sets than the one at hand, can obtain competing performance. Experiments show that the proposed descriptor outperforms existing photometric invariants. Furthermore, we show that combined with shape description these color descriptors obtain excellent results on four challenging datasets, namely, PASCAL VOC 2007, Flowers-102, Stanford dogs-120 and Birds-200.
Address Portland; Oregon; June 2013
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1063-6919 ISBN Medium
Area Expedition Conference CVPR
Notes (up) CIC; 600.048 Approved no
Call Number Admin @ si @ KWK2013a Serial 2262
Permanent link to this record
 

 
Author Fahad Shahbaz Khan; Joost Van de Weijer; Sadiq Ali; Michael Felsberg
Title Evaluating the impact of color on texture recognition Type Conference Article
Year 2013 Publication 15th International Conference on Computer Analysis of Images and Patterns Abbreviated Journal
Volume 8047 Issue Pages 154-162
Keywords Color; Texture; image representation
Abstract State-of-the-art texture descriptors typically operate on grey scale images while ignoring color information. A common way to obtain a joint color-texture representation is to combine the two visual cues at the pixel level. However, such an approach provides sub-optimal results for texture categorisation task.
In this paper we investigate how to optimally exploit color information for texture recognition. We evaluate a variety of color descriptors, popular in image classification, for texture categorisation. In addition we analyze different fusion approaches to combine color and texture cues. Experiments are conducted on the challenging scenes and 10 class texture datasets. Our experiments clearly suggest that in all cases color names provide the best performance. Late fusion is the best strategy to combine color and texture. By selecting the best color descriptor with optimal fusion strategy provides a gain of 5% to 8% compared to texture alone on scenes and texture datasets.
Address York; UK; August 2013
Corporate Author Thesis
Publisher Springer Berlin Heidelberg Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0302-9743 ISBN 978-3-642-40260-9 Medium
Area Expedition Conference CAIP
Notes (up) CIC; 600.048 Approved no
Call Number Admin @ si @ KWA2013 Serial 2263
Permanent link to this record
 

 
Author Shida Beigpour; Marc Serra; Joost Van de Weijer; Robert Benavente; Maria Vanrell; Olivier Penacchio; Dimitris Samaras
Title Intrinsic Image Evaluation On Synthetic Complex Scenes Type Conference Article
Year 2013 Publication 20th IEEE International Conference on Image Processing Abbreviated Journal
Volume Issue Pages 285 - 289
Keywords
Abstract Scene decomposition into its illuminant, shading, and reflectance intrinsic images is an essential step for scene understanding. Collecting intrinsic image groundtruth data is a laborious task. The assumptions on which the ground-truth
procedures are based limit their application to simple scenes with a single object taken in the absence of indirect lighting and interreflections. We investigate synthetic data for intrinsic image research since the extraction of ground truth is straightforward, and it allows for scenes in more realistic situations (e.g, multiple illuminants and interreflections). With this dataset we aim to motivate researchers to further explore intrinsic image decomposition in complex scenes.
Address Melbourne; Australia; September 2013
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICIP
Notes (up) CIC; 600.048; 600.052; 600.051 Approved no
Call Number Admin @ si @ BSW2013 Serial 2264
Permanent link to this record
 

 
Author Naila Murray; Maria Vanrell; Xavier Otazu; C. Alejandro Parraga
Title Low-level SpatioChromatic Grouping for Saliency Estimation Type Journal Article
Year 2013 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI
Volume 35 Issue 11 Pages 2810-2816
Keywords
Abstract We propose a saliency model termed SIM (saliency by induction mechanisms), which is based on a low-level spatiochromatic model that has successfully predicted chromatic induction phenomena. In so doing, we hypothesize that the low-level visual mechanisms that enhance or suppress image detail are also responsible for making some image regions more salient. Moreover, SIM adds geometrical grouplets to enhance complex low-level features such as corners, and suppress relatively simpler features such as edges. Since our model has been fitted on psychophysical chromatic induction data, it is largely nonparametric. SIM outperforms state-of-the-art methods in predicting eye fixations on two datasets and using two metrics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0162-8828 ISBN Medium
Area Expedition Conference
Notes (up) CIC; 600.051; 600.052; 605.203 Approved no
Call Number Admin @ si @ MVO2013 Serial 2289
Permanent link to this record