|   | 
Details
   web
Records
Author Onur Ferhat; Fernando Vilariño
Title Low Cost Eye Tracking: The Current Panorama Type Journal Article
Year 2016 Publication Computational Intelligence and Neuroscience Abbreviated Journal CIN
Volume Issue Pages Article ID 8680541
Keywords
Abstract Despite the availability of accurate, commercial gaze tracker devices working with infrared (IR) technology, visible light gaze tracking constitutes an interesting alternative by allowing scalability and removing hardware requirements. Over the last years, this field has seen examples of research showing performance comparable to the IR alternatives. In this work, we survey the previous work on remote, visible light gaze trackers and analyze the explored techniques from various perspectives such as calibration strategies, head pose invariance, and gaze estimation techniques. We also provide information on related aspects of research such as public datasets to test against, open source projects to build upon, and gaze tracking services to directly use in applications. With all this information, we aim to provide the contemporary and future researchers with a map detailing previously explored ideas and the required tools.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (down) MV; 605.103; 600.047; 600.097;SIAI Approved no
Call Number Admin @ si @ FeV2016 Serial 2744
Permanent link to this record
 

 
Author F. Javier Sanchez; Jorge Bernal; Cristina Sanchez Montes; Cristina Rodriguez de Miguel; Gloria Fernandez Esparrach
Title Bright spot regions segmentation and classification for specular highlights detection in colonoscopy videos Type Journal Article
Year 2017 Publication Machine Vision and Applications Abbreviated Journal MVAP
Volume Issue Pages 1-20
Keywords Specular highlights; bright spot regions segmentation; region classification; colonoscopy
Abstract A novel specular highlights detection method in colonoscopy videos is presented. The method is based on a model of appearance dening specular
highlights as bright spots which are highly contrasted with respect to adjacent regions. Our approach proposes two stages; segmentation, and then classication
of bright spot regions. The former denes a set of candidate regions obtained through a region growing process with local maxima as initial region seeds. This process creates a tree structure which keeps track, at each growing iteration, of the region frontier contrast; nal regions provided depend on restrictions over contrast value. Non-specular regions are ltered through a classication stage performed by a linear SVM classier using model-based features from each region. We introduce a new validation database with more than 25; 000 regions along with their corresponding pixel-wise annotations. We perform a comparative study against other approaches. Results show that our method is superior to other approaches, with our segmented regions being
closer to actual specular regions in the image. Finally, we also present how our methodology can also be used to obtain an accurate prediction of polyp histology.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (down) MV; 600.096; 600.175 Approved no
Call Number Admin @ si @ SBS2017 Serial 2975
Permanent link to this record
 

 
Author Cristina Sanchez Montes; F. Javier Sanchez; Jorge Bernal; Henry Cordova; Maria Lopez Ceron; Miriam Cuatrecasas; Cristina Rodriguez de Miguel; Ana Garcia Rodriguez; Rodrigo Garces Duran; Maria Pellise; Josep Llach; Gloria Fernandez Esparrach
Title Computer-aided Prediction of Polyp Histology on White-Light Colonoscopy using Surface Pattern Analysis Type Journal Article
Year 2019 Publication Endoscopy Abbreviated Journal END
Volume 51 Issue 3 Pages 261-265
Keywords
Abstract Background and study aims: To evaluate a new computational histology prediction system based on colorectal polyp textural surface patterns using high definition white light images.
Patients and methods: Textural elements (textons) were characterized according to their contrast with respect to the surface, shape and number of bifurcations, assuming that dysplastic polyps are associated with highly contrasted, large tubular patterns with some degree of bifurcation. Computer-aided diagnosis (CAD) was compared with pathological diagnosis and the diagnosis by the endoscopists using Kudo and NICE classification.
Results: Images of 225 polyps were evaluated (142 dysplastic and 83 non-dysplastic). CAD system correctly classified 205 (91.1%) polyps, 131/142 (92.3%) dysplastic and 74/83 (89.2%) non-dysplastic. For the subgroup of 100 diminutive (<5 mm) polyps, CAD correctly classified 87 (87%) polyps, 43/50 (86%) dysplastic and 44/50 (88%) non-dysplastic. There were not statistically significant differences in polyp histology prediction based on CAD system and on endoscopist assessment.
Conclusion: A computer vision system based on the characterization of the polyp surface in the white light accurately predicts colorectal polyp histology.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (down) MV; 600.096; 600.119; 600.075 Approved no
Call Number Admin @ si @ SSB2019 Serial 3164
Permanent link to this record
 

 
Author Jorge Bernal; Aymeric Histace; Marc Masana; Quentin Angermann; Cristina Sanchez Montes; Cristina Rodriguez de Miguel; Maroua Hammami; Ana Garcia Rodriguez; Henry Cordova; Olivier Romain; Gloria Fernandez Esparrach; Xavier Dray; F. Javier Sanchez
Title GTCreator: a flexible annotation tool for image-based datasets Type Journal Article
Year 2019 Publication International Journal of Computer Assisted Radiology and Surgery Abbreviated Journal IJCAR
Volume 14 Issue 2 Pages 191–201
Keywords Annotation tool; Validation Framework; Benchmark; Colonoscopy; Evaluation
Abstract Abstract Purpose: Methodology evaluation for decision support systems for health is a time consuming-task. To assess performance of polyp detection
methods in colonoscopy videos, clinicians have to deal with the annotation
of thousands of images. Current existing tools could be improved in terms of
exibility and ease of use. Methods:We introduce GTCreator, a exible annotation tool for providing image and text annotations to image-based datasets.
It keeps the main basic functionalities of other similar tools while extending
other capabilities such as allowing multiple annotators to work simultaneously
on the same task or enhanced dataset browsing and easy annotation transfer aiming to speed up annotation processes in large datasets. Results: The
comparison with other similar tools shows that GTCreator allows to obtain
fast and precise annotation of image datasets, being the only one which offers
full annotation editing and browsing capabilites. Conclusions: Our proposed
annotation tool has been proven to be efficient for large image dataset annota-
tion, as well as showing potential of use in other stages of method evaluation
such as experimental setup or results analysis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (down) MV; 600.096; 600.109; 600.119; 601.305 Approved no
Call Number Admin @ si @ BHM2019 Serial 3163
Permanent link to this record
 

 
Author Jorge Bernal; Nima Tajkbaksh; F. Javier Sanchez; Bogdan J. Matuszewski; Hao Chen; Lequan Yu; Quentin Angermann; Olivier Romain; Bjorn Rustad; Ilangko Balasingham; Konstantin Pogorelov; Sungbin Choi; Quentin Debard; Lena Maier Hein; Stefanie Speidel; Danail Stoyanov; Patrick Brandao; Henry Cordova; Cristina Sanchez Montes; Suryakanth R. Gurudu; Gloria Fernandez Esparrach; Xavier Dray; Jianming Liang; Aymeric Histace
Title Comparative Validation of Polyp Detection Methods in Video Colonoscopy: Results from the MICCAI 2015 Endoscopic Vision Challenge Type Journal Article
Year 2017 Publication IEEE Transactions on Medical Imaging Abbreviated Journal TMI
Volume 36 Issue 6 Pages 1231 - 1249
Keywords Endoscopic vision; Polyp Detection; Handcrafted features; Machine Learning; Validation Framework
Abstract Colonoscopy is the gold standard for colon cancer screening though still some polyps are missed, thus preventing early disease detection and treatment. Several computational systems have been proposed to assist polyp detection during colonoscopy but so far without consistent evaluation. The lack
of publicly available annotated databases has made it difficult to compare methods and to assess if they achieve performance levels acceptable for clinical use. The Automatic Polyp Detection subchallenge, conducted as part of the Endoscopic Vision Challenge (http://endovis.grand-challenge.org) at the international conference on Medical Image Computing and Computer Assisted
Intervention (MICCAI) in 2015, was an effort to address this need. In this paper, we report the results of this comparative evaluation of polyp detection methods, as well as describe additional experiments to further explore differences between methods. We define performance metrics and provide evaluation databases that allow comparison of multiple methodologies. Results show that convolutional neural networks (CNNs) are the state of the art. Nevertheless it is also demonstrated that combining different methodologies can lead to an improved overall performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (down) MV; 600.096; 600.075 Approved no
Call Number Admin @ si @ BTS2017 Serial 2949
Permanent link to this record
 

 
Author Gloria Fernandez Esparrach; Jorge Bernal; Maria Lopez Ceron; Henry Cordova; Cristina Sanchez Montes; Cristina Rodriguez de Miguel; F. Javier Sanchez
Title Exploring the clinical potential of an automatic colonic polyp detection method based on the creation of energy maps Type Journal Article
Year 2016 Publication Endoscopy Abbreviated Journal END
Volume 48 Issue 9 Pages 837-842
Keywords
Abstract Background and aims: Polyp miss-rate is a drawback of colonoscopy that increases significantly in small polyps. We explored the efficacy of an automatic computer vision method for polyp detection.
Methods: Our method relies on a model that defines polyp boundaries as valleys of image intensity. Valley information is integrated into energy maps which represent the likelihood of polyp presence.
Results: In 24 videos containing polyps from routine colonoscopies, all polyps were detected in at least one frame. Mean values of the maximum of energy map were higher in frames with polyps than without (p<0.001). Performance improved in high quality frames (AUC= 0.79, 95%CI: 0.70-0.87 vs 0.75, 95%CI: 0.66-0.83). Using 3.75 as maximum threshold value, sensitivity and specificity for detection of polyps were 70.4% (95%CI: 60.3-80.8) and 72.4% (95%CI: 61.6-84.6), respectively.
Conclusion: Energy maps showed a good performance for colonic polyp detection. This indicates a potential applicability in clinical practice.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (down) MV; Approved no
Call Number Admin @ si @FBL2016 Serial 2778
Permanent link to this record
 

 
Author Cristina Sanchez Montes; Jorge Bernal; Ana Garcia Rodriguez; Henry Cordova; Gloria Fernandez Esparrach
Title Revisión de métodos computacionales de detección y clasificación de pólipos en imagen de colonoscopia Type Journal Article
Year 2020 Publication Gastroenterología y Hepatología Abbreviated Journal GH
Volume 43 Issue 4 Pages 222-232
Keywords
Abstract Computer-aided diagnosis (CAD) is a tool with great potential to help endoscopists in the tasks of detecting and histologically classifying colorectal polyps. In recent years, different technologies have been described and their potential utility has been increasingly evidenced, which has generated great expectations among scientific societies. However, most of these works are retrospective and use images of different quality and characteristics which are analysed off line. This review aims to familiarise gastroenterologists with computational methods and the particularities of endoscopic imaging, which have an impact on image processing analysis. Finally, the publicly available image databases, needed to compare and confirm the results obtained with different methods, are presented.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (down) MV; Approved no
Call Number Admin @ si @ SBG2020 Serial 3404
Permanent link to this record
 

 
Author Mirko Arnold; Anarta Ghosh; Stephen Ameling; G Lacey
Title Automatic segmentation and inpainting of specular highlights for endoscopic imaging Type Journal Article
Year 2010 Publication EURASIP Journal on Image and Video Processing Abbreviated Journal EURASIP JIVP
Volume 2010 Issue 9 Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area 800 Expedition Conference
Notes (down) MV Approved no
Call Number fernando @ fernando @ Serial 2423
Permanent link to this record
 

 
Author Jorge Bernal
Title Polyp Localization and Segmentation in Colonoscopy Images by Means of a Model of Appearance for Polyps Type Journal Article
Year 2014 Publication Electronic Letters on Computer Vision and Image Analysis Abbreviated Journal ELCVIA
Volume 13 Issue 2 Pages 9-10
Keywords Colonoscopy; polyp localization; polyp segmentation; Eye-tracking
Abstract Colorectal cancer is the fourth most common cause of cancer death worldwide and its survival rate depends on the stage in which it is detected on hence the necessity for an early colon screening. There are several screening techniques but colonoscopy is still nowadays the gold standard, although it has some drawbacks such as the miss rate. Our contribution, in the field of intelligent systems for colonoscopy, aims at providing a polyp localization and a polyp segmentation system based on a model of appearance for polyps. To develop both methods we define a model of appearance for polyps, which describes a polyp as enclosed by intensity valleys. The novelty of our contribution resides on the fact that we include in our model aspects of the image formation and we also consider the presence of other elements from the endoluminal scene such as specular highlights and blood vessels, which have an impact on the performance of our methods. In order to develop our polyp localization method we accumulate valley information in order to generate energy maps, which are also used to guide the polyp segmentation. Our methods achieve promising results in polyp localization and segmentation. As we want to explore the usability of our methods we present a comparative analysis between physicians fixations obtained via an eye tracking device and our polyp localization method. The results show that our method is indistinguishable to novice physicians although it is far from expert physicians.
Address
Corporate Author Thesis
Publisher Place of Publication Editor Alicia Fornes; Volkmar Frinken
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (down) MV Approved no
Call Number Admin @ si @ Ber2014 Serial 2487
Permanent link to this record
 

 
Author Iban Berganzo-Besga; Hector A. Orengo; Felipe Lumbreras; Paloma Aliende; Monica N. Ramsey
Title Automated detection and classification of multi-cell Phytoliths using Deep Learning-Based Algorithms Type Journal Article
Year 2022 Publication Journal of Archaeological Science Abbreviated Journal JArchSci
Volume 148 Issue Pages 105654
Keywords
Abstract This paper presents an algorithm for automated detection and classification of multi-cell phytoliths, one of the major components of many archaeological and paleoenvironmental deposits. This identification, based on phytolith wave pattern, is made using a pretrained VGG19 deep learning model. This approach has been tested in three key phytolith genera for the study of agricultural origins in Near East archaeology: Avena, Hordeum and Triticum. Also, this classification has been validated at species-level using Triticum boeoticum and dicoccoides images. Due to the diversity of microscopes, cameras and chemical treatments that can influence images of phytolith slides, three types of data augmentation techniques have been implemented: rotation of the images at 45-degree angles, random colour and brightness jittering, and random blur/sharpen. The implemented workflow has resulted in an overall accuracy of 93.68% for phytolith genera, improving previous attempts. The algorithm has also demonstrated its potential to automatize the classification of phytoliths species with an overall accuracy of 100%. The open code and platforms employed to develop the algorithm assure the method's accessibility, reproducibility and reusability.
Address December 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (down) MSIAU; MACO; 600.167 Approved no
Call Number Admin @ si @ BOL2022 Serial 3753
Permanent link to this record
 

 
Author Xavier Soria; Gonzalo Pomboza-Junez; Angel Sappa
Title LDC: Lightweight Dense CNN for Edge Detection Type Journal Article
Year 2022 Publication IEEE Access Abbreviated Journal ACCESS
Volume 10 Issue Pages 68281-68290
Keywords
Abstract This paper presents a Lightweight Dense Convolutional (LDC) neural network for edge detection. The proposed model is an adaptation of two state-of-the-art approaches, but it requires less than 4% of parameters in comparison with these approaches. The proposed architecture generates thin edge maps and reaches the highest score (i.e., ODS) when compared with lightweight models (models with less than 1 million parameters), and reaches a similar performance when compare with heavy architectures (models with about 35 million parameters). Both quantitative and qualitative results and comparisons with state-of-the-art models, using different edge detection datasets, are provided. The proposed LDC does not use pre-trained weights and requires straightforward hyper-parameter settings. The source code is released at https://github.com/xavysp/LDC
Address 27 June 2022
Corporate Author Thesis
Publisher IEEE Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (down) MSIAU; MACO; 600.160; 600.167 Approved no
Call Number Admin @ si @ SPS2022 Serial 3751
Permanent link to this record
 

 
Author Daniela Rato; Miguel Oliveira; Vitor Santos; Manuel Gomes; Angel Sappa
Title A sensor-to-pattern calibration framework for multi-modal industrial collaborative cells Type Journal Article
Year 2022 Publication Journal of Manufacturing Systems Abbreviated Journal JMANUFSYST
Volume 64 Issue Pages 497-507
Keywords Calibration; Collaborative cell; Multi-modal; Multi-sensor
Abstract Collaborative robotic industrial cells are workspaces where robots collaborate with human operators. In this context, safety is paramount, and for that a complete perception of the space where the collaborative robot is inserted is necessary. To ensure this, collaborative cells are equipped with a large set of sensors of multiple modalities, covering the entire work volume. However, the fusion of information from all these sensors requires an accurate extrinsic calibration. The calibration of such complex systems is challenging, due to the number of sensors and modalities, and also due to the small overlapping fields of view between the sensors, which are positioned to capture different viewpoints of the cell. This paper proposes a sensor to pattern methodology that can calibrate a complex system such as a collaborative cell in a single optimization procedure. Our methodology can tackle RGB and Depth cameras, as well as LiDARs. Results show that our methodology is able to accurately calibrate a collaborative cell containing three RGB cameras, a depth camera and three 3D LiDARs.
Address
Corporate Author Thesis
Publisher Science Direct Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (down) MSIAU; MACO Approved no
Call Number Admin @ si @ ROS2022 Serial 3750
Permanent link to this record
 

 
Author Angel Morera; Angel Sanchez; A. Belen Moreno; Angel Sappa; Jose F. Velez
Title SSD vs. YOLO for Detection of Outdoor Urban Advertising Panels under Multiple Variabilities Type Journal Article
Year 2020 Publication Sensors Abbreviated Journal SENS
Volume 20 Issue 16 Pages 4587
Keywords
Abstract This work compares Single Shot MultiBox Detector (SSD) and You Only Look Once (YOLO) deep neural networks for the outdoor advertisement panel detection problem by handling multiple and combined variabilities in the scenes. Publicity panel detection in images offers important advantages both in the real world as well as in the virtual one. For example, applications like Google Street View can be used for Internet publicity and when detecting these ads panels in images, it could be possible to replace the publicity appearing inside the panels by another from a funding company. In our experiments, both SSD and YOLO detectors have produced acceptable results under variable sizes of panels, illumination conditions, viewing perspectives, partial occlusion of panels, complex background and multiple panels in scenes. Due to the difficulty of finding annotated images for the considered problem, we created our own dataset for conducting the experiments. The major strength of the SSD model was the almost elimination of False Positive (FP) cases, situation that is preferable when the publicity contained inside the panel is analyzed after detecting them. On the other side, YOLO produced better panel localization results detecting a higher number of True Positive (TP) panels with a higher accuracy. Finally, a comparison of the two analyzed object detection models with different types of semantic segmentation networks and using the same evaluation metrics is also included.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (down) MSIAU; 600.130; 601.349; 600.122 Approved no
Call Number Admin @ si @ MSM2020 Serial 3452
Permanent link to this record
 

 
Author Jorge Charco; Angel Sappa; Boris X. Vintimilla; Henry Velesaca
Title Camera pose estimation in multi-view environments: From virtual scenarios to the real world Type Journal Article
Year 2021 Publication Image and Vision Computing Abbreviated Journal IVC
Volume 110 Issue Pages 104182
Keywords
Abstract This paper presents a domain adaptation strategy to efficiently train network architectures for estimating the relative camera pose in multi-view scenarios. The network architectures are fed by a pair of simultaneously acquired images, hence in order to improve the accuracy of the solutions, and due to the lack of large datasets with pairs of overlapped images, a domain adaptation strategy is proposed. The domain adaptation strategy consists on transferring the knowledge learned from synthetic images to real-world scenarios. For this, the networks are firstly trained using pairs of synthetic images, which are captured at the same time by a pair of cameras in a virtual environment; and then, the learned weights of the networks are transferred to the real-world case, where the networks are retrained with a few real images. Different virtual 3D scenarios are generated to evaluate the relationship between the accuracy on the result and the similarity between virtual and real scenarios—similarity on both geometry of the objects contained in the scene as well as relative pose between camera and objects in the scene. Experimental results and comparisons are provided showing that the accuracy of all the evaluated networks for estimating the camera pose improves when the proposed domain adaptation strategy is used, highlighting the importance on the similarity between virtual-real scenarios.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (down) MSIAU; 600.130; 600.122 Approved no
Call Number Admin @ si @ CSV2021 Serial 3577
Permanent link to this record
 

 
Author Henry Velesaca; Patricia Suarez; Raul Mira; Angel Sappa
Title Computer Vision based Food Grain Classification: a Comprehensive Survey Type Journal Article
Year 2021 Publication Computers and Electronics in Agriculture Abbreviated Journal CEA
Volume 187 Issue Pages 106287
Keywords
Abstract This manuscript presents a comprehensive survey on recent computer vision based food grain classification techniques. It includes state-of-the-art approaches intended for different grain varieties. The approaches proposed in the literature are analyzed according to the processing stages considered in the classification pipeline, making it easier to identify common techniques and comparisons. Additionally, the type of images considered by each approach (i.e., images from the: visible, infrared, multispectral, hyperspectral bands) together with the strategy used to generate ground truth data (i.e., real and synthetic images) are reviewed. Finally, conclusions highlighting future needs and challenges are presented.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (down) MSIAU; 600.130; 600.122 Approved no
Call Number Admin @ si @ VSM2021 Serial 3576
Permanent link to this record