|   | 
Details
   web
Records
Author Mickael Cormier; Andreas Specker; Julio C. S. Jacques; Lucas Florin; Jurgen Metzler; Thomas B. Moeslund; Kamal Nasrollahi; Sergio Escalera; Jurgen Beyerer
Title UPAR Challenge: Pedestrian Attribute Recognition and Attribute-based Person Retrieval – Dataset, Design, and Results Type Conference Article
Year 2023 Publication 2023 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops Abbreviated Journal
Volume Issue Pages 166-175
Keywords
Abstract In civilian video security monitoring, retrieving and tracking a person of interest often rely on witness testimony and their appearance description. Deployed systems rely on a large amount of annotated training data and are expected to show consistent performance in diverse areas and gen-eralize well between diverse settings w.r.t. different view-points, illumination, resolution, occlusions, and poses for indoor and outdoor scenes. However, for such generalization, the system would require a large amount of various an-notated data for training and evaluation. The WACV 2023 Pedestrian Attribute Recognition and Attributed-based Per-son Retrieval Challenge (UPAR-Challenge) aimed to spot-light the problem of domain gaps in a real-world surveil-lance context and highlight the challenges and limitations of existing methods. The UPAR dataset, composed of 40 important binary attributes over 12 attribute categories across four datasets, was extended with data captured from a low-flying UAV from the P-DESTRE dataset. To this aim, 0.6M additional annotations were manually labeled and vali-dated. Each track evaluated the robustness of the competing methods to domain shifts by training on limited data from a specific domain and evaluating using data from unseen do-mains. The challenge attracted 41 registered participants, but only one team managed to outperform the baseline on one track, emphasizing the task's difficulty. This work de-scribes the challenge design, the adopted dataset, obtained results, as well as future directions on the topic.
Address Waikoloa; Hawai; USA; January 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference WACVW
Notes (up) HUPBA Approved no
Call Number Admin @ si @ CSJ2023 Serial 3902
Permanent link to this record
 

 
Author Hao Fang; Ajian Liu; Jun Wan; Sergio Escalera; Hugo Jair Escalante; Zhen Lei
Title Surveillance Face Presentation Attack Detection Challenge Type Conference Article
Year 2023 Publication Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops Abbreviated Journal
Volume Issue Pages 6360-6370
Keywords
Abstract Face Anti-spoofing (FAS) is essential to secure face recognition systems from various physical attacks. However, most of the studies lacked consideration of long-distance scenarios. Specifically, compared with FAS in traditional scenes such as phone unlocking, face payment, and self-service security inspection, FAS in long-distance such as station squares, parks, and self-service supermarkets are equally important, but it has not been sufficiently explored yet. In order to fill this gap in the FAS community, we collect a large-scale Surveillance High-Fidelity Mask (SuHiFiMask). SuHiFiMask contains 10,195 videos from 101 subjects of different age groups, which are collected by 7 mainstream surveillance cameras. Based on this dataset and protocol-3 for evaluating the robustness of the algorithm under quality changes, we organized a face presentation attack detection challenge in surveillance scenarios. It attracted 180 teams for the development phase with a total of 37 teams qualifying for the final round. The organization team re-verified and re-ran the submitted code and used the results as the final ranking. In this paper, we present an overview of the challenge, including an introduction to the dataset used, the definition of the protocol, the evaluation metrics, and the announcement of the competition results. Finally, we present the top-ranked algorithms and the research ideas provided by the competition for attack detection in long-range surveillance scenarios.
Address Vancouver; Canada; June 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPRW
Notes (up) HuPBA Approved no
Call Number Admin @ si @ FLW2023 Serial 3917
Permanent link to this record
 

 
Author Galadrielle Humblot-Renaux; Sergio Escalera; Thomas B. Moeslund
Title Beyond AUROC & co. for evaluating out-of-distribution detection performance Type Conference Article
Year 2023 Publication Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops Abbreviated Journal
Volume Issue Pages 3880-3889
Keywords
Abstract While there has been a growing research interest in developing out-of-distribution (OOD) detection methods, there has been comparably little discussion around how these methods should be evaluated. Given their relevance for safe(r) AI, it is important to examine whether the basis for comparing OOD detection methods is consistent with practical needs. In this work, we take a closer look at the go-to metrics for evaluating OOD detection, and question the approach of exclusively reducing OOD detection to a binary classification task with little consideration for the detection threshold. We illustrate the limitations of current metrics (AUROC & its friends) and propose a new metric – Area Under the Threshold Curve (AUTC), which explicitly penalizes poor separation between ID and OOD samples. Scripts and data are available at https://github.com/glhr/beyond-auroc
Address Vancouver; Canada; June 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPRW
Notes (up) HUPBA Approved no
Call Number Admin @ si @ HEM2023 Serial 3918
Permanent link to this record
 

 
Author Dong Wang; Jia Guo; Qiqi Shao; Haochi He; Zhian Chen; Chuanbao Xiao; Ajian Liu; Sergio Escalera; Hugo Jair Escalante; Zhen Lei; Jun Wan; Jiankang Deng
Title Wild Face Anti-Spoofing Challenge 2023: Benchmark and Results Type Conference Article
Year 2023 Publication Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops Abbreviated Journal
Volume Issue Pages 6379-6390
Keywords
Abstract Face anti-spoofing (FAS) is an essential mechanism for safeguarding the integrity of automated face recognition systems. Despite substantial advancements, the generalization of existing approaches to real-world applications remains challenging. This limitation can be attributed to the scarcity and lack of diversity in publicly available FAS datasets, which often leads to overfitting during training or saturation during testing. In terms of quantity, the number of spoof subjects is a critical determinant. Most datasets comprise fewer than 2,000 subjects. With regard to diversity, the majority of datasets consist of spoof samples collected in controlled environments using repetitive, mechanical processes. This data collection methodology results in homogenized samples and a dearth of scenario diversity. To address these shortcomings, we introduce the Wild Face Anti-Spoofing (WFAS) dataset, a large-scale, diverse FAS dataset collected in unconstrained settings. Our dataset encompasses 853,729 images of 321,751 spoof subjects and 529,571 images of 148,169 live subjects, representing a substantial increase in quantity. Moreover, our dataset incorporates spoof data obtained from the internet, spanning a wide array of scenarios and various commercial sensors, including 17 presentation attacks (PAs) that encompass both 2D and 3D forms. This novel data collection strategy markedly enhances FAS data diversity. Leveraging the WFAS dataset and Protocol 1 (Known-Type), we host the Wild Face Anti-Spoofing Challenge at the CVPR2023 workshop. Additionally, we meticulously evaluate representative methods using Protocol 1 and Protocol 2 (Unknown-Type). Through an in-depth examination of the challenge outcomes and benchmark baselines, we provide insightful analyses and propose potential avenues for future research. The dataset is released under Insightface 1 .
Address Vancouver; Canada; June 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPRW
Notes (up) HUPBA Approved no
Call Number Admin @ si @ WGS2023 Serial 3919
Permanent link to this record
 

 
Author Hugo Bertiche; Niloy J Mitra; Kuldeep Kulkarni; Chun Hao Paul Huang; Tuanfeng Y Wang; Meysam Madadi; Sergio Escalera; Duygu Ceylan
Title Blowing in the Wind: CycleNet for Human Cinemagraphs from Still Images Type Conference Article
Year 2023 Publication 36th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal
Volume Issue Pages 459-468
Keywords
Abstract Cinemagraphs are short looping videos created by adding subtle motions to a static image. This kind of media is popular and engaging. However, automatic generation of cinemagraphs is an underexplored area and current solutions require tedious low-level manual authoring by artists. In this paper, we present an automatic method that allows generating human cinemagraphs from single RGB images. We investigate the problem in the context of dressed humans under the wind. At the core of our method is a novel cyclic neural network that produces looping cinemagraphs for the target loop duration. To circumvent the problem of collecting real data, we demonstrate that it is possible, by working in the image normal space, to learn garment motion dynamics on synthetic data and generalize to real data. We evaluate our method on both synthetic and real data and demonstrate that it is possible to create compelling and plausible cinemagraphs from single RGB images.
Address Vancouver; Canada; June 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPR
Notes (up) HUPBA Approved no
Call Number Admin @ si @ BMK2023 Serial 3921
Permanent link to this record
 

 
Author Cristina Palmero; Oleg V Komogortsev; Sergio Escalera; Sachin S Talathi
Title Multi-Rate Sensor Fusion for Unconstrained Near-Eye Gaze Estimation Type Conference Article
Year 2023 Publication Proceedings of the 2023 Symposium on Eye Tracking Research and Applications Abbreviated Journal
Volume Issue Pages 1-8
Keywords
Abstract The power requirements of video-oculography systems can be prohibitive for high-speed operation on portable devices. Recently, low-power alternatives such as photosensors have been evaluated, providing gaze estimates at high frequency with a trade-off in accuracy and robustness. Potentially, an approach combining slow/high-fidelity and fast/low-fidelity sensors should be able to exploit their complementarity to track fast eye motion accurately and robustly. To foster research on this topic, we introduce OpenSFEDS, a near-eye gaze estimation dataset containing approximately 2M synthetic camera-photosensor image pairs sampled at 500 Hz under varied appearance and camera position. We also formulate the task of sensor fusion for gaze estimation, proposing a deep learning framework consisting in appearance-based encoding and temporal eye-state dynamics. We evaluate several single- and multi-rate fusion baselines on OpenSFEDS, achieving 8.7% error decrease when tracking fast eye movements with a multi-rate approach vs. a gaze forecasting approach operating with a low-speed sensor alone.
Address Tubingen; Germany; May 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ETRA
Notes (up) HUPBA Approved no
Call Number Admin @ si @ PKE2023 Serial 3923
Permanent link to this record
 

 
Author Christian Keilstrup Ingwersen; Artur Xarles; Albert Clapes; Meysam Madadi; Janus Nortoft Jensen; Morten Rieger Hannemose; Anders Bjorholm Dahl; Sergio Escalera
Title Video-based Skill Assessment for Golf: Estimating Golf Handicap Type Conference Article
Year 2023 Publication Proceedings of the 6th International Workshop on Multimedia Content Analysis in Sports Abbreviated Journal
Volume Issue Pages 31-39
Keywords
Abstract Automated skill assessment in sports using video-based analysis holds great potential for revolutionizing coaching methodologies. This paper focuses on the problem of skill determination in golfers by leveraging deep learning models applied to a large database of video recordings of golf swings. We investigate different regression, ranking and classification based methods and compare to a simple baseline approach. The performance is evaluated using mean squared error (MSE) as well as computing the percentages of correctly ranked pairs based on the Kendall correlation. Our results demonstrate an improvement over the baseline, with a 35% lower mean squared error and 68% correctly ranked pairs. However, achieving fine-grained skill assessment remains challenging. This work contributes to the development of AI-driven coaching systems and advances the understanding of video-based skill determination in the context of golf.
Address Otawa; Canada; October 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference MMSports
Notes (up) HUPBA Approved no
Call Number Admin @ si @ KXC2023 Serial 3929
Permanent link to this record
 

 
Author Siyang Song; Micol Spitale; Cheng Luo; German Barquero; Cristina Palmero; Sergio Escalera; Michel Valstar; Tobias Baur; Fabien Ringeval; Elisabeth Andre; Hatice Gunes
Title REACT2023: The First Multiple Appropriate Facial Reaction Generation Challenge Type Conference Article
Year 2023 Publication Proceedings of the 31st ACM International Conference on Multimedia Abbreviated Journal
Volume Issue Pages 9620–9624
Keywords
Abstract The Multiple Appropriate Facial Reaction Generation Challenge (REACT2023) is the first competition event focused on evaluating multimedia processing and machine learning techniques for generating human-appropriate facial reactions in various dyadic interaction scenarios, with all participants competing strictly under the same conditions. The goal of the challenge is to provide the first benchmark test set for multi-modal information processing and to foster collaboration among the audio, visual, and audio-visual behaviour analysis and behaviour generation (a.k.a generative AI) communities, to compare the relative merits of the approaches to automatic appropriate facial reaction generation under different spontaneous dyadic interaction conditions. This paper presents: (i) the novelties, contributions and guidelines of the REACT2023 challenge; (ii) the dataset utilized in the challenge; and (iii) the performance of the baseline systems on the two proposed sub-challenges: Offline Multiple Appropriate Facial Reaction Generation and Online Multiple Appropriate Facial Reaction Generation, respectively. The challenge baseline code is publicly available at https://github.com/reactmultimodalchallenge/baseline_react2023.
Address Otawa; Canada; October 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference MM
Notes (up) HUPBA Approved no
Call Number Admin @ si @ SSL2023 Serial 3931
Permanent link to this record
 

 
Author Zahra Raisi-Estabragh; Carlos Martin-Isla; Louise Nissen; Liliana Szabo; Victor M. Campello; Sergio Escalera; Simon Winther; Morten Bottcher; Karim Lekadir; and Steffen E. Petersen
Title Radiomics analysis enhances the diagnostic performance of CMR stress perfusion: a proof-of-concept study using the Dan-NICAD dataset Type Journal Article
Year 2023 Publication Frontiers in Cardiovascular Medicine Abbreviated Journal FCM
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) HUPBA Approved no
Call Number Admin @ si @ RMN2023 Serial 3937
Permanent link to this record
 

 
Author Joakim Bruslund Haurum; Sergio Escalera; Graham W. Taylor; Thomas B.
Title Which Tokens to Use? Investigating Token Reduction in Vision Transformers Type Conference Article
Year 2023 Publication Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Since the introduction of the Vision Transformer (ViT), researchers have sought to make ViTs more efficient by removing redundant information in the processed tokens. While different methods have been explored to achieve this goal, we still lack understanding of the resulting reduction patterns and how those patterns differ across token reduction methods and datasets. To close this gap, we set out to understand the reduction patterns of 10 different token reduction methods using four image classification datasets. By systematically comparing these methods on the different classification tasks, we find that the Top-K pruning method is a surprisingly strong baseline. Through in-depth analysis of the different methods, we determine that: the reduction patterns are generally not consistent when varying the capacity of the backbone model, the reduction patterns of pruning-based methods significantly differ from fixed radial patterns, and the reduction patterns of pruning-based methods are correlated across classification datasets. Finally we report that the similarity of reduction patterns is a moderate-to-strong proxy for model performance. Project page at https://vap.aau.dk/tokens.
Address Paris; France; October 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICCVW
Notes (up) HUPBA Approved no
Call Number Admin @ si @ BET2023 Serial 3940
Permanent link to this record
 

 
Author Jun Wan; Guodong Guo; Sergio Escalera; Hugo Jair Escalante; Stan Z Li
Title Advances in Face Presentation Attack Detection Type Book Whole
Year 2023 Publication Advances in Face Presentation Attack Detection Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) HUPBA Approved no
Call Number Admin @ si @ WGE2023a Serial 3955
Permanent link to this record
 

 
Author Jun Wan; Guodong Guo; Sergio Escalera; Hugo Jair Escalante; Stan Z Li
Title Face Presentation Attack Detection (PAD) Challenges Type Book Chapter
Year 2023 Publication Advances in Face Presentation Attack Detection Abbreviated Journal
Volume Issue Pages 17–35
Keywords
Abstract In recent years, the security of face recognition systems has been increasingly threatened. Face Anti-spoofing (FAS) is essential to secure face recognition systems primarily from various attacks. In order to attract researchers and push forward the state of the art in Face Presentation Attack Detection (PAD), we organized three editions of Face Anti-spoofing Workshop and Competition at CVPR 2019, CVPR 2020, and ICCV 2021, which have attracted more than 800 teams from academia and industry, and greatly promoted the algorithms to overcome many challenging problems. In this chapter, we introduce the detailed competition process, including the challenge phases, timeline and evaluation metrics. Along with the workshop, we will introduce the corresponding dataset for each competition including data acquisition details, data processing, statistics, and evaluation protocol. Finally, we provide the available link to download the datasets used in the challenges.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title SLCV
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) HUPBA Approved no
Call Number Admin @ si @ WGE2023b Serial 3956
Permanent link to this record
 

 
Author Jun Wan; Guodong Guo; Sergio Escalera; Hugo Jair Escalante; Stan Z Li
Title Best Solutions Proposed in the Context of the Face Anti-spoofing Challenge Series Type Book Chapter
Year 2023 Publication Advances in Face Presentation Attack Detection Abbreviated Journal
Volume Issue Pages 37–78
Keywords
Abstract The PAD competitions we organized attracted more than 835 teams from home and abroad, most of them from the industry, which shows that the topic of face anti-spoofing is closely related to daily life, and there is an urgent need for advanced algorithms to solve its application needs. Specifically, the Chalearn LAP multi-modal face anti-spoofing attack detection challenge attracted more than 300 teams for the development phase with a total of 13 teams qualifying for the final round; the Chalearn Face Anti-spoofing Attack Detection Challenge attracted 340 teams in the development stage, and finally, 11 and 8 teams have submitted their codes in the single-modal and multi-modal face anti-spoofing recognition challenges, respectively; the 3D High-Fidelity Mask Face Presentation Attack Detection Challenge attracted 195 teams for the development phase with a total of 18 teams qualifying for the final round. All the results were verified and re-run by the organizing team, and the results were used for the final ranking. In this chapter, we briefly the methods developed by the teams participating in each competition, and introduce the algorithm details of the top-three ranked teams in detail.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) HUPBA Approved no
Call Number Admin @ si @ WGE2023d Serial 3958
Permanent link to this record
 

 
Author Jun Wan; Guodong Guo; Sergio Escalera; Hugo Jair Escalante; Stan Z Li
Title Face Anti-spoofing Progress Driven by Academic Challenges Type Book Chapter
Year 2023 Publication Advances in Face Presentation Attack Detection Abbreviated Journal
Volume Issue Pages 1–15
Keywords
Abstract With the ubiquity of facial authentication systems and the prevalence of security cameras around the world, the impact that facial presentation attack techniques may have is huge. However, research progress in this field has been slowed by a number of factors, including the lack of appropriate and realistic datasets, ethical and privacy issues that prevent the recording and distribution of facial images, the little attention that the community has given to potential ethnic biases among others. This chapter provides an overview of contributions derived from the organization of academic challenges in the context of face anti-spoofing detection. Specifically, we discuss the limitations of benchmarks and summarize our efforts in trying to boost research by the community via the participation in academic challenges
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title SLCV
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) HUPBA Approved no
Call Number Admin @ si @ WGE2023c Serial 3957
Permanent link to this record
 

 
Author Artur Xarles; Sergio Escalera; Thomas B. Moeslund; Albert Clapes
Title ASTRA: An Action Spotting TRAnsformer for Soccer Videos Type Conference Article
Year 2023 Publication Proceedings of the 6th International Workshop on Multimedia Content Analysis in Sports Abbreviated Journal
Volume Issue Pages 93–102
Keywords
Abstract In this paper, we introduce ASTRA, a Transformer-based model designed for the task of Action Spotting in soccer matches. ASTRA addresses several challenges inherent in the task and dataset, including the requirement for precise action localization, the presence of a long-tail data distribution, non-visibility in certain actions, and inherent label noise. To do so, ASTRA incorporates (a) a Transformer encoder-decoder architecture to achieve the desired output temporal resolution and to produce precise predictions, (b) a balanced mixup strategy to handle the long-tail distribution of the data, (c) an uncertainty-aware displacement head to capture the label variability, and (d) input audio signal to enhance detection of non-visible actions. Results demonstrate the effectiveness of ASTRA, achieving a tight Average-mAP of 66.82 on the test set. Moreover, in the SoccerNet 2023 Action Spotting challenge, we secure the 3rd position with an Average-mAP of 70.21 on the challenge set.
Address Otawa; Canada; October 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference MMSports
Notes (up) HUPBA Approved no
Call Number Admin @ si @ XEM2023 Serial 3970
Permanent link to this record