Xavier Soria, Yachuan Li, Mohammad Rouhani, & Angel Sappa. (2023). Tiny and Efficient Model for the Edge Detection Generalization. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops.
Abstract: Most high-level computer vision tasks rely on low-level image operations as their initial processes. Operations such as edge detection, image enhancement, and super-resolution, provide the foundations for higher level image analysis. In this work we address the edge detection considering three main objectives: simplicity, efficiency, and generalization since current state-of-the-art (SOTA) edge detection models are increased in complexity for better accuracy. To achieve this, we present Tiny and Efficient Edge Detector (TEED), a light convolutional neural network with only 58K parameters, less than 0:2% of the state-of-the-art models. Training on the BIPED dataset takes less than 30 minutes, with each epoch requiring less than 5 minutes. Our proposed model is easy to train and it quickly converges within very first few epochs, while the predicted edge-maps are crisp and of high quality. Additionally, we propose a new dataset to test the generalization of edge detection, which comprises samples from popular images used in edge detection and image segmentation. The source code is available in https://github.com/xavysp/TEED.
|
Iban Berganzo-Besga, Hector A. Orengo, Felipe Lumbreras, Aftab Alam, Rosie Campbell, Petrus J Gerrits, et al. (2023). Curriculum learning-based strategy for low-density archaeological mound detection from historical maps in India and Pakistan. ScR - Scientific Reports, 13, 11257.
Abstract: This paper presents two algorithms for the large-scale automatic detection and instance segmentation of potential archaeological mounds on historical maps. Historical maps present a unique source of information for the reconstruction of ancient landscapes. The last 100 years have seen unprecedented landscape modifications with the introduction and large-scale implementation of mechanised agriculture, channel-based irrigation schemes, and urban expansion to name but a few. Historical maps offer a window onto disappearing landscapes where many historical and archaeological elements that no longer exist today are depicted. The algorithms focus on the detection and shape extraction of mound features with high probability of being archaeological settlements, mounds being one of the most commonly documented archaeological features to be found in the Survey of India historical map series, although not necessarily recognised as such at the time of surveying. Mound features with high archaeological potential are most commonly depicted through hachures or contour-equivalent form-lines, therefore, an algorithm has been designed to detect each of those features. Our proposed approach addresses two of the most common issues in archaeological automated survey, the low-density of archaeological features to be detected, and the small amount of training data available. It has been applied to all types of maps available of the historic 1″ to 1-mile series, thus increasing the complexity of the detection. Moreover, the inclusion of synthetic data, along with a Curriculum Learning strategy, has allowed the algorithm to better understand what the mound features look like. Likewise, a series of filters based on topographic setting, form, and size have been applied to improve the accuracy of the models. The resulting algorithms have a recall value of 52.61% and a precision of 82.31% for the hachure mounds, and a recall value of 70.80% and a precision of 70.29% for the form-line mounds, which allowed the detection of nearly 6000 mound features over an area of 470,500 km2, the largest such approach to have ever been applied. If we restrict our focus to the maps most similar to those used in the algorithm training, we reach recall values greater than 60% and precision values greater than 90%. This approach has shown the potential to implement an adaptive algorithm that allows, after a small amount of retraining with data detected from a new map, a better general mound feature detection in the same map.
|
Henry Velesaca, Gisel Bastidas-Guacho, Mohammad Rouhani, & Angel Sappa. (2024). Multimodal image registration techniques: a comprehensive survey. MTAP - Multimedia Tools and Applications, .
Abstract: This manuscript presents a review of state-of-the-art techniques proposed in the literature for multimodal image registration, addressing instances where images from different modalities need to be precisely aligned in the same reference system. This scenario arises when the images to be registered come from different modalities, among the visible and thermal spectral bands, 3D-RGB, or flash-no flash, or NIR-visible. The review spans different techniques from classical approaches to more modern ones based on deep learning, aiming to highlight the particularities required at each step in the registration pipeline when dealing with multimodal images. It is noteworthy that medical images are excluded from this review due to their specific characteristics, including the use of both active and passive sensors or the non-rigid nature of the body contained in the image.
|
Mohamed Ramzy Ibrahim, Robert Benavente, Daniel Ponsa, & Felipe Lumbreras. (2024). SWViT-RRDB: Shifted Window Vision Transformer Integrating Residual in Residual Dense Block for Remote Sensing Super-Resolution. In 19th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications.
Abstract: Remote sensing applications, impacted by acquisition season and sensor variety, require high-resolution images. Transformer-based models improve satellite image super-resolution but are less effective than convolutional neural networks (CNNs) at extracting local details, crucial for image clarity. This paper introduces SWViT-RRDB, a new deep learning model for satellite imagery super-resolution. The SWViT-RRDB, combining transformer with convolution and attention blocks, overcomes the limitations of existing models by better representing small objects in satellite images. In this model, a pipeline of residual fusion group (RFG) blocks is used to combine the multi-headed self-attention (MSA) with residual in residual dense block (RRDB). This combines global and local image data for better super-resolution. Additionally, an overlapping cross-attention block (OCAB) is used to enhance fusion and allow interaction between neighboring pixels to maintain long-range pixel dependencies across the image. The SWViT-RRDB model and its larger variants outperform state-of-the-art (SoTA) models on two different satellite datasets in terms of PSNR and SSIM.
|
Mohamed Ramzy Ibrahim, Robert Benavente, Daniel Ponsa, & Felipe Lumbreras. (2023). Unveiling the Influence of Image Super-Resolution on Aerial Scene Classification. In Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications (Vol. 14469, 214–228). LNCS.
Abstract: Deep learning has made significant advances in recent years, and as a result, it is now in a stage where it can achieve outstanding results in tasks requiring visual understanding of scenes. However, its performance tends to decline when dealing with low-quality images. The advent of super-resolution (SR) techniques has started to have an impact on the field of remote sensing by enabling the restoration of fine details and enhancing image quality, which could help to increase performance in other vision tasks. However, in previous works, contradictory results for scene visual understanding were achieved when SR techniques were applied. In this paper, we present an experimental study on the impact of SR on enhancing aerial scene classification. Through the analysis of different state-of-the-art SR algorithms, including traditional methods and deep learning-based approaches, we unveil the transformative potential of SR in overcoming the limitations of low-resolution (LR) aerial imagery. By enhancing spatial resolution, more fine details are captured, opening the door for an improvement in scene understanding. We also discuss the effect of different image scales on the quality of SR and its effect on aerial scene classification. Our experimental work demonstrates the significant impact of SR on enhancing aerial scene classification compared to LR images, opening new avenues for improved remote sensing applications.
|
Francesc Tanarro Marquez, Pau Gratacos Marti, F. Javier Sanchez, Joan Ramon Jimenez Minguell, Coen Antens, & Enric Sala i Esteva. (2012). A device for monitoring condition of a railway supply. European Patent Office.
Abstract: of a railway supply line when the supply line is in contact with a head of a pantograph of a vehicle in order to power said vehicle . The device includes a camera ( for monitoring parameters indicative of operating capability of said supply line.
The device is intended to monitor condition
tive of operating capability of said supply line. The device includes a reflective element. comprising a pattern , intended to be arranged onto the pantograph head . The camera is intended to be arranged on the vehicle (10) so as to register the pattern position regarding a vertical direction.
|
Onur Ferhat. (2012). Eye-Tracking with Webcam-Based Setups: Implementation of a Real-Time System and an Analysis of Factors Affecting Performance (Fernando Vilariño, Ed.) (Vol. 172). Master's thesis, , .
Abstract: In the recent years commercial eye-tracking hardware has become more common, with the introduction of new models from several brands that have better performance and easier setup procedures. A cause and at the same time a result of this phenomenon is the popularity of eye-tracking research directed at marketing, accessibility and usability, among others.
One problem with these hardware components is scalability, because both the price and the necessary expertise to operate them makes it practically impossible in the large scale. In this work, we analyze the feasibility of a software eye-tracking system based on a single, ordinary webcam. Our aim is to discover the limits of such a system and to see whether it provides acceptable performances.
The significance of this setup is that it is the most common setup found in consumer environments, off-the-shelf electronic devices such as laptops, mobile phones and tablet computers. As no special equipment such as infrared lights, mirrors or zoom lenses are used; setting up and calibrating the system is easier compared to other approaches using these components.
Our work is based on the open source application Opengazer, which provides a good starting point for our contributions. We propose several improvements in order to push the system's performance further and make it feasible as a robust, real-time device. Then we carry out an elaborate experiment involving 18 human subjects and 4 different system setups. Finally, we give an analysis of the results and discuss the effects of setup changes, subject differences and modifications in the software.
Keywords: Computer vision, eye-tracking, gaussian process, feature selection, optical flow
|
Jorge Bernal. (2012). Polyp Localization and Segmentation in Colonoscopy Images by Means of a Model of Appearance for Polyps (F. Javier Sanchez, & Fernando Vilariño, Eds.). Ph.D. thesis, Ediciones Graficas Rey, .
Abstract: Colorectal cancer is the fourth most common cause of cancer death worldwide and its survival rate depends on the stage in which it is detected on hence the necessity for an early colon screening. There are several screening techniques but colonoscopy is still nowadays the gold standard, although it has some drawbacks such as the miss rate. Our contribution, in the field of intelligent systems for colonoscopy, aims at providing a polyp localization and a polyp segmentation system based on a model of appearance for polyps. To develop both methods we define a model of appearance for polyps, which describes a polyp as enclosed by intensity valleys. The novelty of our contribution resides on the fact that we include in our model aspects of the image formation and we also consider the presence of other elements from the endoluminal scene such as specular highlights and blood vessels, which have an impact on the performance of our methods. In order to develop our polyp localization method we accumulate valley information in order to generate energy maps, which are also used to guide the polyp segmentation. Our methods achieve promising results in polyp localization and segmentation. As we want to explore the usability of our methods we present a comparative analysis between physicians fixations obtained via an eye tracking device and our polyp localization method. The results show that our method is indistinguishable to novice physicians although it is far from expert physicians.
|
Mirko Arnold, Anarta Ghosh, Stephen Ameling, & G Lacey. (2010). Automatic segmentation and inpainting of specular highlights for endoscopic imaging. EURASIP JIVP - EURASIP Journal on Image and Video Processing, 2010(9).
|
Mirko Arnold, Anarta Ghosh, Gerard Lacey, Stephen Patchett, & Hugh Mulcahy. (2009). Indistinct frame detection in colonoscopy videos. In Machine Vision and Image Processing Conference (pp. 47–52).
|
Mirko Arnold, Stephan Ameling, Anarta Ghosh, & Gerard Lacey. (2011). Quality Improvement of Endoscopy Videos. In Proceedings of the 8th IASTED International Conference on Biomedical Engineering (Vol. 723).
|
Mirko Arnold, Anarta Ghosh, Glen Doherty, Hugh Mulcahy, Stephen Patchett, & Gerard Lacey. (2013). Towards Automatic Direct Observation of Procedure and Skill (DOPS) in Colonoscopy. In Proceedings of the International Conference on Computer Vision Theory and Applications (pp. 48–53).
|
Jorge Bernal. (2014). Polyp Localization and Segmentation in Colonoscopy Images by Means of a Model of Appearance for Polyps. ELCVIA - Electronic Letters on Computer Vision and Image Analysis, 13(2), 9–10.
Abstract: Colorectal cancer is the fourth most common cause of cancer death worldwide and its survival rate depends on the stage in which it is detected on hence the necessity for an early colon screening. There are several screening techniques but colonoscopy is still nowadays the gold standard, although it has some drawbacks such as the miss rate. Our contribution, in the field of intelligent systems for colonoscopy, aims at providing a polyp localization and a polyp segmentation system based on a model of appearance for polyps. To develop both methods we define a model of appearance for polyps, which describes a polyp as enclosed by intensity valleys. The novelty of our contribution resides on the fact that we include in our model aspects of the image formation and we also consider the presence of other elements from the endoluminal scene such as specular highlights and blood vessels, which have an impact on the performance of our methods. In order to develop our polyp localization method we accumulate valley information in order to generate energy maps, which are also used to guide the polyp segmentation. Our methods achieve promising results in polyp localization and segmentation. As we want to explore the usability of our methods we present a comparative analysis between physicians fixations obtained via an eye tracking device and our polyp localization method. The results show that our method is indistinguishable to novice physicians although it is far from expert physicians.
Keywords: Colonoscopy; polyp localization; polyp segmentation; Eye-tracking
|
Jorge Bernal, F. Javier Sanchez, Cristina Rodriguez de Miguel, & Gloria Fernandez Esparrach. (2015). Bulding up the future of colonoscopy: A synergy between clinicians and computer scientists. In Colonoscopy and Colorectal Cancer.
Abstract: Recent advances in endoscopic technology have generated an increasing interest in strengthening the collaboration between clinicians and computers scientist to develop intelligent systems that can provide additional information to clinicians in the different stages of an intervention. The objective of this chapter is to identify clinical drawbacks of colonoscopy in order to define potential areas of collaboration. Once areas are defined, we present the challenges that colonoscopy images present in order computational methods to provide with meaningful output, including those related to image formation and acquisition, as they are proven to have an impact in the performance of an intelligent system. Finally, we also propose how to define validation frameworks in order to assess the performance of a given method, making an special emphasis on how databases should be created and annotated and which metrics should be used to evaluate systems correctly.
Keywords: Intelligent systems; Image properties; Validation; Clinical drawbacks; Endoluminal scene description
|
Joan M. Nuñez. (2015). Vascular Pattern Characterization in Colonoscopy Images (Fernando Vilariño, Ed.). Ph.D. thesis, Ediciones Graficas Rey, .
Abstract: Colorectal cancer is the third most common cancer worldwide and the second most common malignant tumor in Europe. Screening tests have shown to be very eective in increasing the survival rates since they allow an early detection of polyps. Among the dierent screening techniques, colonoscopy is considered the gold standard although clinical studies mention several problems that have an impact in the quality of the procedure. The navigation through the rectum and colon track can be challenging for the physicians which can increase polyp miss rates. The thorough visualization of the colon track must be ensured so that
the chances of missing lesions are minimized. The visual analysis of colonoscopy images can provide important information to the physicians and support their navigation during the procedure.
Blood vessels and their branching patterns can provide descriptive power to potentially develop biometric markers. Anatomical markers based on blood vessel patterns could be used to identify a particular scene in colonoscopy videos and to support endoscope navigation by generating a sequence of ordered scenes through the dierent colon sections. By verifying the presence of vascular content in the endoluminal scene it is also possible to certify a proper
inspection of the colon mucosa and to improve polyp localization. Considering the potential uses of blood vessel description, this contribution studies the characterization of the vascular content and the analysis of the descriptive power of its branching patterns.
Blood vessel characterization in colonoscopy images is shown to be a challenging task. The endoluminal scene is conformed by several elements whose similar characteristics hinder the development of particular models for each of them. To overcome such diculties we propose the use of the blood vessel branching characteristics as key features for pattern description. We present a model to characterize junctions in binary patterns. The implementation
of the junction model allows us to develop a junction localization method. We
created two data sets including manually labeled vessel information as well as manual ground truths of two types of keypoint landmarks: junctions and endpoints. The proposed method outperforms the available algorithms in the literature in experiments in both, our newly created colon vessel data set, and in DRIVE retinal fundus image data set. In the latter case, we created a manual ground truth of junction coordinates. Since we want to explore the descriptive potential of junctions and vessels, we propose a graph-based approach to
create anatomical markers. In the context of polyp localization, we present a new method to inhibit the in uence of blood vessels in the extraction valley-prole information. The results show that our methodology decreases vessel in
uence, increases polyp information and leads to an improvement in state-of-the-art polyp localization performance. We also propose a polyp-specic segmentation method that outperforms other general and specic approaches.
|