toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Joost Van de Weijer; Shida Beigpour edit   pdf
url  isbn
openurl 
  Title The Dichromatic Reflection Model: Future Research Directions and Applications Type Conference Article
  Year 2011 Publication International Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications Abbreviated Journal  
  Volume Issue Pages  
  Keywords dblp  
  Abstract The dichromatic reflection model (DRM) predicts that color distributions form a parallelogram in color space, whose shape is defined by the body reflectance and the illuminant color. In this paper we resume the assumptions which led to the DRM and shortly recall two of its main applications domains: color image segmentation and photometric invariant feature computation. After having introduced the model we discuss several limitations of the theory, especially those which are raised once working on real-world uncalibrated images. In addition, we summerize recent extensions of the model which allow to handle more complicated light interactions. Finally, we suggest some future research directions which would further extend its applicability.  
  Address Algarve, Portugal  
  Corporate Author Thesis  
  Publisher SciTePress Place of Publication Editor Mestetskiy, Leonid and Braz, José  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-989-8425-47-8 Medium  
  Area Expedition Conference VISIGRAPP  
  Notes (up) CIC Approved no  
  Call Number Admin @ si @ WeB2011 Serial 1778  
Permanent link to this record
 

 
Author Shida Beigpour; Joost Van de Weijer edit   pdf
url  doi
isbn  openurl
  Title Object Recoloring Based on Intrinsic Image Estimation Type Conference Article
  Year 2011 Publication 13th IEEE International Conference in Computer Vision Abbreviated Journal  
  Volume Issue Pages 327 - 334  
  Keywords  
  Abstract Object recoloring is one of the most popular photo-editing tasks. The problem of object recoloring is highly under-constrained, and existing recoloring methods limit their application to objects lit by a white illuminant. Application of these methods to real-world scenes lit by colored illuminants, multiple illuminants, or interreflections, results in unrealistic recoloring of objects. In this paper, we focus on the recoloring of single-colored objects presegmented from their background. The single-color constraint allows us to fit a more comprehensive physical model to the object. We demonstrate that this permits us to perform realistic recoloring of objects lit by non-white illuminants, and multiple illuminants. Moreover, the model allows for more realistic handling of illuminant alteration of the scene. Recoloring results captured by uncalibrated cameras demonstrate that the proposed framework obtains realistic recoloring for complex natural images. Furthermore we use the model to transfer color between objects and show that the results are more realistic than existing color transfer methods.  
  Address Barcelona  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-5499 ISBN 978-1-4577-1101-5 Medium  
  Area Expedition Conference ICCV  
  Notes (up) CIC Approved no  
  Call Number Admin @ si @ BeW2011 Serial 1781  
Permanent link to this record
 

 
Author Javier Vazquez edit  openurl
  Title Colour Constancy in Natural Through Colour Naming and Sensor Sharpening Type Book Whole
  Year 2011 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Colour is derived from three physical properties: incident light, object reflectance and sensor sensitivities. Incident light varies under natural conditions; hence, recovering scene illuminant is an important issue in computational colour. One way to deal with this problem under calibrated conditions is by following three steps, 1) building a narrow-band sensor basis to accomplish the diagonal model, 2) building a feasible set of illuminants, and 3) defining criteria to select the best illuminant. In this work we focus on colour constancy for natural images by introducing perceptual criteria in the first and third stages.
To deal with the illuminant selection step, we hypothesise that basic colour categories can be used as anchor categories to recover the best illuminant. These colour names are related to the way that the human visual system has evolved to encode relevant natural colour statistics. Therefore the recovered image provides the best representation of the scene labelled with the basic colour terms. We demonstrate with several experiments how this selection criterion achieves current state-of-art results in computational colour constancy. In addition to this result, we psychophysically prove that usual angular error used in colour constancy does not correlate with human preferences, and we propose a new perceptual colour constancy evaluation.
The implementation of this selection criterion strongly relies on the use of a diagonal
model for illuminant change. Consequently, the second contribution focuses on building an appropriate narrow-band sensor basis to represent natural images. We propose to use the spectral sharpening technique to compute a unique narrow-band basis optimised to represent a large set of natural reflectances under natural illuminants and given in the basis of human cones. The proposed sensors allow predicting unique hues and the World colour Survey data independently of the illuminant by using a compact singularity function. Additionally, we studied different families of sharp sensors to minimise different perceptual measures. This study brought us to extend the spherical sampling procedure from 3D to 6D.
Several research lines still remain open. One natural extension would be to measure the
effects of using the computed sharp sensors on the category hypothesis, while another might be to insert spatial contextual information to improve category hypothesis. Finally, much work still needs to be done to explore how individual sensors can be adjusted to the colours in a scene.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Maria Vanrell;Graham D. Finlayson  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) CIC Approved no  
  Call Number Admin @ si @ Vaz2011a Serial 1785  
Permanent link to this record
 

 
Author Jaime Moreno edit  url
isbn  openurl
  Title Perceptual Criteria on Image Compresions Type Book Whole
  Year 2011 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Nowadays, digital images are used in many areas in everyday life, but they tend to be big. This increases amount of information leads us to the problem of image data storage. For example, it is common to have a representation a color pixel as a 24-bit number, where the channels red, green, and blue employ 8 bits each. In consequence, this kind of color pixel can specify one of 224 ¼ 16:78 million colors. Therefore, an image at a resolution of 512 £ 512 that allocates 24 bits per pixel, occupies 786,432 bytes. That is why image compression is important. An important feature of image compression is that it can be lossy or lossless. A compressed image is acceptable provided these losses of image information are not perceived by the eye. It is possible to assume that a portion of this information is redundant. Lossless Image Compression is defined as to mathematically decode the same image which was encoded. In Lossy Image Compression needs to identify two features inside the image: the redundancy and the irrelevancy of information. Thus, lossy compression modifies the image data in such a way when they are encoded and decoded, the recovered image is similar enough to the original one. How similar is the recovered image in comparison to the original image is defined prior to the compression process, and it depends on the implementation to be performed. In lossy compression, current image compression schemes remove information considered irrelevant by using mathematical criteria. One of the problems of these schemes is that although the numerical quality of the compressed image is low, it shows a high visual image quality, e.g. it does not show a lot of visible artifacts. It is because these mathematical criteria, used to remove information, do not take into account if the viewed information is perceived by the Human Visual System. Therefore, the aim of an image compression scheme designed to obtain images that do not show artifacts although their numerical quality can be low, is to eliminate the information that is not visible by the Human Visual System. Hence, this Ph.D. thesis proposes to exploit the visual redundancy existing in an image by reducing those features that can be unperceivable for the Human Visual System. First, we define an image quality assessment, which is highly correlated with the psychophysical experiments performed by human observers. The proposed CwPSNR metrics weights the well-known PSNR by using a particular perceptual low level model of the Human Visual System, e.g. the Chromatic Induction Wavelet Model (CIWaM). Second, we propose an image compression algorithm (called Hi-SET), which exploits the high correlation and self-similarity of pixels in a given area or neighborhood by means of a fractal function. Hi-SET possesses the main features that modern image compressors have, that is, it is an embedded coder, which allows a progressive transmission. Third, we propose a perceptual quantizer (½SQ), which is a modification of the uniform scalar quantizer. The ½SQ is applied to a pixel set in a certain Wavelet sub-band, that is, a global quantization. Unlike this, the proposed modification allows to perform a local pixel-by-pixel forward and inverse quantization, introducing into this process a perceptual distortion which depends on the surround spatial information of the pixel. Combining ½SQ method with the Hi-SET image compressor, we define a perceptual image compressor, called ©SET. Finally, a coding method for Region of Interest areas is presented, ½GBbBShift, which perceptually weights pixels into these areas and maintains only the more important perceivable features in the rest of the image. Results presented in this report show that CwPSNR is the best-ranked image quality method when it is applied to the most common image compression distortions such as JPEG and JPEG2000. CwPSNR shows the best correlation with the judgement of human observers, which is based on the results of psychophysical experiments obtained for relevant image quality databases such as TID2008, LIVE, CSIQ and IVC. Furthermore, Hi-SET coder obtains better results both for compression ratios and perceptual image quality than the JPEG2000 coder and other coders that use a Hilbert Fractal for image compression. Hence, when the proposed perceptual quantization is introduced to Hi-SET coder, our compressor improves its numerical and perceptual e±ciency. When ½GBbBShift method applied to Hi-SET is compared against MaxShift method applied to the JPEG2000 standard and Hi-SET, the images coded by our ROI method get the best results when the overall image quality is estimated. Both the proposed perceptual quantization and the ½GBbBShift method are generalized algorithms that can be applied to other Wavelet based image compression algorithms such as JPEG2000, SPIHT or SPECK.  
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Xavier Otazu  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-938351-3-2 Medium  
  Area Expedition Conference  
  Notes (up) CIC Approved no  
  Call Number Admin @ si @ Mor2011 Serial 1786  
Permanent link to this record
 

 
Author Eduard Vazquez edit  openurl
  Title Unsupervised image segmentation based on material reflectance description and saliency Type Book Whole
  Year 2011 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Image segmentations aims to partition an image into a set of non-overlapped regions, called segments. Despite the simplicity of the definition, image segmentation raises as a very complex problem in all its stages. The definition of segment is still unclear. When asking to a human to perform a segmentation, this person segments at different levels of abstraction. Some segments might be a single, well-defined texture whereas some others correspond with an object in the scene which might including multiple textures and colors. For this reason, segmentation is divided in bottom-up segmentation and top-down segmentation. Bottom up-segmentation is problem independent, that is, focused on general properties of the images such as textures or illumination. Top-down segmentation is a problem-dependent approach which looks for specific entities in the scene, such as known objects. This work is focused on bottom-up segmentation. Beginning from the analysis of the lacks of current methods, we propose an approach called RAD. Our approach overcomes the main shortcomings of those methods which use the physics of the light to perform the segmentation. RAD is a topological approach which describes a single-material reflectance. Afterwards, we cope with one of the main problems in image segmentation: non supervised adaptability to image content. To yield a non-supervised method, we use a model of saliency yet presented in this thesis. It computes the saliency of the chromatic transitions of an image by means of a statistical analysis of the images derivatives. This method of saliency is used to build our final approach of segmentation: spRAD. This method is a non-supervised segmentation approach. Our saliency approach has been validated with a psychophysical experiment as well as computationally, overcoming a state-of-the-art saliency method. spRAD also outperforms state-of-the-art segmentation techniques as results obtained with a widely-used segmentation dataset show  
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Place of Publication Editor Ramon Baldrich  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) CIC Approved no  
  Call Number Admin @ si @ Vaz2011b Serial 1835  
Permanent link to this record
 

 
Author Fahad Shahbaz Khan edit  openurl
  Title Coloring bag-of-words based image representations Type Book Whole
  Year 2011 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Put succinctly, the bag-of-words based image representation is the most successful approach for object and scene recognition. Within the bag-of-words framework the optimal fusion of multiple cues, such as shape, texture and color, still remains an active research domain. There exist two main approaches to combine color and shape information within the bag-of-words framework. The first approach called, early fusion, fuses color and shape at the feature level as a result of which a joint colorshape vocabulary is produced. The second approach, called late fusion, concatenates histogram representation of both color and shape, obtained independently. In the first part of this thesis, we analyze the theoretical implications of both early and late feature fusion. We demonstrate that both these approaches are suboptimal for a subset of object categories. Consequently, we propose a novel method for recognizing object categories when using multiple cues by separately processing the shape and color cues and combining them by modulating the shape features by category specific color attention. Color is used to compute bottom-up and top-down attention maps. Subsequently, the color attention maps are used to modulate the weights of the shape features. Shape features are given more weight in regions with higher attention and vice versa. The approach is tested on several benchmark object recognition data sets and the results clearly demonstrate the effectiveness of our proposed method. In the second part of the thesis, we investigate the problem of obtaining compact spatial pyramid representations for object and scene recognition. Spatial pyramids have been successfully applied to incorporate spatial information into bag-of-words based image representation. However, a major drawback of spatial pyramids is that it leads to high dimensional image representations. We present a novel framework for obtaining compact pyramid representation. The approach reduces the size of a high dimensional pyramid representation upto an order of magnitude without any significant reduction in accuracy. Moreover, we also investigate the optimal combination of multiple features such as color and shape within the context of our compact pyramid representation. Finally, we describe a novel technique to build discriminative visual words from multiple cues learned independently from training images. To this end, we use an information theoretic vocabulary compression technique to find discriminative combinations of visual cues and the resulting visual vocabulary is compact, has the cue binding property, and supports individual weighting of cues in the final image representation. The approach is tested on standard object recognition data sets. The results obtained clearly demonstrate the effectiveness of our approach.  
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Place of Publication Editor Joost Van de Weijer;Maria Vanrell  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) CIC Approved no  
  Call Number Admin @ si @ Kha2011 Serial 1838  
Permanent link to this record
 

 
Author Fahad Shahbaz Khan; Joost Van de Weijer; Andrew Bagdanov; Maria Vanrell edit   pdf
url  openurl
  Title Portmanteau Vocabularies for Multi-Cue Image Representation Type Conference Article
  Year 2011 Publication 25th Annual Conference on Neural Information Processing Systems Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract We describe a novel technique for feature combination in the bag-of-words model of image classification. Our approach builds discriminative compound words from primitive cues learned independently from training images. Our main observation is that modeling joint-cue distributions independently is more statistically robust for typical classification problems than attempting to empirically estimate the dependent, joint-cue distribution directly. We use Information theoretic vocabulary compression to find discriminative combinations of cues and the resulting vocabulary of portmanteau words is compact, has the cue binding property, and supports individual weighting of cues in the final image representation. State-of-the-art results on both the Oxford Flower-102 and Caltech-UCSD Bird-200 datasets demonstrate the effectiveness of our technique compared to other, significantly more complex approaches to multi-cue image representation  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference NIPS  
  Notes (up) CIC Approved no  
  Call Number Admin @ si @ KWB2011 Serial 1865  
Permanent link to this record
 

 
Author Naila Murray; Sandra Skaff; Luca Marchesotti; Florent Perronnin edit   pdf
url  doi
isbn  openurl
  Title Towards Automatic Concept Transfer Type Conference Article
  Year 2011 Publication Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Non-Photorealistic Animation and Rendering Abbreviated Journal  
  Volume Issue Pages 167.176  
  Keywords chromatic modeling, color concepts, color transfer, concept transfer  
  Abstract This paper introduces a novel approach to automatic concept transfer; examples of concepts are “romantic”, “earthy”, and “luscious”. The approach modifies the color content of an input image given only a concept specified by a user in natural language, thereby requiring minimal user input. This approach is particularly useful for users who are aware of the message they wish to convey in the transferred image while being unsure of the color combination needed to achieve the corresponding transfer. The user may adjust the intensity level of the concept transfer to his/her liking with a single parameter. The proposed approach uses a convex clustering algorithm, with a novel pruning mechanism, to automatically set the complexity of models of chromatic content. It also uses the Earth-Mover's Distance to compute a mapping between the models of the input image and the target chromatic concept. Results show that our approach yields transferred images which effectively represent concepts, as confirmed by a user study.  
  Address  
  Corporate Author Thesis  
  Publisher ACM Press Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-4503-0907-3 Medium  
  Area Expedition Conference NPAR  
  Notes (up) CIC Approved no  
  Call Number Admin @ si @ MSM2011 Serial 1866  
Permanent link to this record
 

 
Author Jordi Roca; C. Alejandro Parraga; Maria Vanrell edit  url
openurl 
  Title Categorical Focal Colours are Structurally Invariant Under Illuminant Changes Type Conference Article
  Year 2011 Publication European Conference on Visual Perception Abbreviated Journal  
  Volume Issue Pages 196  
  Keywords  
  Abstract The visual system perceives the colour of surfaces approximately constant under changes of illumination. In this work, we investigate how stable is the perception of categorical \“focal\” colours and their interrelations with varying illuminants and simple chromatic backgrounds. It has been proposed that best examples of colour categories across languages cluster in small regions of the colour space and are restricted to a set of 11 basic terms (Kay and Regier, 2003 Proceedings of the National Academy of Sciences of the USA 100 9085\–9089). Following this, we developed a psychophysical paradigm that exploits the ability of subjects to reliably reproduce the most representative examples of each category, adjusting multiple test patches embedded in a coloured Mondrian. The experiment was run on a CRT monitor (inside a dark room) under various simulated illuminants. We modelled the recorded data for each subject and adapted state as a 3D interconnected structure (graph) in Lab space. The graph nodes were the subject\’s focal colours at each adaptation state. The model allowed us to get a better distance measure between focal structures under different illuminants. We found that perceptual focal structures tend to be preserved better than the structures of the physical \“ideal\” colours under illuminant changes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Perception 40 Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ECVP  
  Notes (up) CIC Approved no  
  Call Number Admin @ si @ RPV2011 Serial 1867  
Permanent link to this record
 

 
Author Jaime Moreno; Xavier Otazu edit  doi
isbn  openurl
  Title Image compression algorithm based on Hilbert scanning of embedded quadTrees: an introduction of the Hi-SET coder Type Conference Article
  Year 2011 Publication IEEE International Conference on Multimedia and Expo Abbreviated Journal  
  Volume Issue Pages 1-6  
  Keywords  
  Abstract In this work we present an effective and computationally simple algorithm for image compression based on Hilbert Scanning of Embedded quadTrees (Hi-SET). It allows to represent an image as an embedded bitstream along a fractal function. Embedding is an important feature of modern image compression algorithms, in this way Salomon in [1, pg. 614] cite that another feature and perhaps a unique one is the fact of achieving the best quality for the number of bits input by the decoder at any point during the decoding. Hi-SET possesses also this latter feature. Furthermore, the coder is based on a quadtree partition strategy, that applied to image transformation structures such as discrete cosine or wavelet transform allows to obtain an energy clustering both in frequency and space. The coding algorithm is composed of three general steps, using just a list of significant pixels. The implementation of the proposed coder is developed for gray-scale and color image compression. Hi-SET compressed images are, on average, 6.20dB better than the ones obtained by other compression techniques based on the Hilbert scanning. Moreover, Hi-SET improves the image quality in 1.39dB and 1.00dB in gray-scale and color compression, respectively, when compared with JPEG2000 coder.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1945-7871 ISBN 978-1-61284-348-3 Medium  
  Area Expedition Conference ICME  
  Notes (up) CIC Approved no  
  Call Number Admin @ si @ MoO2011a Serial 2176  
Permanent link to this record
 

 
Author Jaime Moreno; Xavier Otazu edit  openurl
  Title Image coder based on Hilbert scanning of embedded quadTrees Type Conference Article
  Year 2011 Publication Data Compression Conference Abbreviated Journal  
  Volume Issue Pages 470-470  
  Keywords  
  Abstract In this work we present an effective and computationally simple algorithm for image compression based on Hilbert Scanning of Embedded quadTrees (Hi-SET). It allows to represent an image as an embedded bitstream along a fractal function. Embedding is an important feature of modern image compression algorithms, in this way Salomon in [1, pg. 614] cite that another feature and perhaps a unique one is the fact of achieving the best quality for the number of bits input by the decoder at any point during the decoding. Hi-SET possesses also this latter feature. Furthermore, the coder is based on a quadtree partition strategy, that applied to image transformation structures such as discrete cosine or wavelet transform allows to obtain an energy clustering both in frequency and space. The coding algorithm is composed of three general steps, using just a list of significant pixels.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference DCC  
  Notes (up) CIC Approved no  
  Call Number Admin @ si @ MoO2011b Serial 2177  
Permanent link to this record
 

 
Author Maria del Camp Davesa edit  openurl
  Title Human action categorization in image sequences Type Report
  Year 2011 Publication CVC Technical Report Abbreviated Journal  
  Volume 169 Issue Pages  
  Keywords  
  Abstract  
  Address Bellaterra (Spain)  
  Corporate Author Computer Vision Center Thesis Master's thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) CiC;CIC Approved no  
  Call Number Admin @ si @ Dav2011 Serial 1934  
Permanent link to this record
 

 
Author Palaiahnakote Shivakumara; Anjan Dutta; Trung Quy Phan; Chew Lim Tan; Umapada Pal edit  doi
openurl 
  Title A Novel Mutual Nearest Neighbor based Symmetry for Text Frame Classification in Video Type Journal Article
  Year 2011 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 44 Issue 8 Pages 1671-1683  
  Keywords  
  Abstract In the field of multimedia retrieval in video, text frame classification is essential for text detection, event detection, event boundary detection, etc. We propose a new text frame classification method that introduces a combination of wavelet and median moment with k-means clustering to select probable text blocks among 16 equally sized blocks of a video frame. The same feature combination is used with a new Max–Min clustering at the pixel level to choose probable dominant text pixels in the selected probable text blocks. For the probable text pixels, a so-called mutual nearest neighbor based symmetry is explored with a four-quadrant formation centered at the centroid of the probable dominant text pixels to know whether a block is a true text block or not. If a frame produces at least one true text block then it is considered as a text frame otherwise it is a non-text frame. Experimental results on different text and non-text datasets including two public datasets and our own created data show that the proposed method gives promising results in terms of recall and precision at the block and frame levels. Further, we also show how existing text detection methods tend to misclassify non-text frames as text frames in term of recall and precision at both the block and frame levels.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) DAG Approved no  
  Call Number Admin @ si @ SDP2011 Serial 1727  
Permanent link to this record
 

 
Author Lluis Pere de las Heras; Gemma Sanchez edit  doi
isbn  openurl
  Title And-Or Graph Grammar for Architectural Floorplan Representation, Learning and Recognition. A Semantic, Structural and Hierarchical Model Type Conference Article
  Year 2011 Publication 5th Iberian Conference on Pattern Recognition and Image Analysis Abbreviated Journal  
  Volume 6669 Issue Pages 17-24  
  Keywords  
  Abstract This paper presents a syntactic model for architectural floor plan interpretation. A stochastic image grammar over an And-Or graph is inferred to represent the hierarchical, structural and semantic relations between elements of all possible floor plans. This grammar is augmented with three different probabilistic models, learnt from a training set, to account the frequency of that relations. Then, a Bottom-Up/Top-Down parser with a pruning strategy has been used for floor plan recognition. For a given input, the parser generates the most probable parse graph for that document. This graph not only contains the structural and semantic relations of its elements, but also its hierarchical composition, that allows to interpret the floor plan at different levels of abstraction.  
  Address Las Palmas de Gran Canaria. Spain  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-642-21256-7 Medium  
  Area Expedition Conference IbPRIA  
  Notes (up) DAG Approved no  
  Call Number Admin @ si @ HeS2011 Serial 1736  
Permanent link to this record
 

 
Author Anjan Dutta; Josep Llados; Umapada Pal edit  doi
isbn  openurl
  Title A Bag-of-Paths Based Serialized Subgraph Matching for Symbol Spotting in Line Drawings Type Conference Article
  Year 2011 Publication 5th Iberian Conference on Pattern Recognition and Image Analysis Abbreviated Journal  
  Volume 6669 Issue Pages 620-627  
  Keywords  
  Abstract In this paper we propose an error tolerant subgraph matching algorithm based on bag-of-paths for solving the problem of symbol spotting in line drawings. Bag-of-paths is a factorized representation of graphs where the factorization is done by considering all the acyclic paths between each pair of connected nodes. Similar paths within the whole collection of documents are clustered and organized in a lookup table for efficient indexing. The lookup table contains the index key of each cluster and the corresponding list of locations as a single entry. The mean path of each of the clusters serves as the index key for each table entry. The spotting method is then formulated by a spatial voting scheme to the list of locations of the paths that are decided in terms of search of similar paths that compose the query symbol. Efficient indexing of common substructures helps to reduce the computational burden of usual graph based methods. The proposed method can also be seen as a way to serialize graphs which allows to reduce the complexity of the subgraph isomorphism. We have encoded the paths in terms of both attributed strings and turning functions, and presented a comparative results between them within the symbol spotting framework. Experimentations for matching different shape silhouettes are also reported and the method has been proved to work in noisy environment also.  
  Address Las Palmas de Gran Canaria. Spain  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Berlin Editor Jordi Vitria; Joao Miguel Raposo; Mario Hernandez  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-21256-7 Medium  
  Area Expedition Conference IbPRIA  
  Notes (up) DAG Approved no  
  Call Number Admin @ si @ DLP2011a Serial 1738  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: