Home | [1–10] << 11 12 13 14 15 16 17 18 19 20 >> [21–30] |
![]() |
Carles Fernandez. (2010). Understanding Image Sequences: the Role of Ontologies in Cognitive Vision (Jordi Gonzalez, & Xavier Roca, Eds.). Ph.D. thesis, Ediciones Graficas Rey, .
Abstract: The increasing ubiquitousness of digital information in our daily lives has positioned
video as a favored information vehicle, and given rise to an astonishing generation of social media and surveillance footage. This raises a series of technological demands for automatic video understanding and management, which together with the compromising attentional limitations of human operators, have motivated the research community to guide its steps towards a better attainment of such capabilities. As a result, current trends on cognitive vision promise to recognize complex events and self-adapt to different environments, while managing and integrating several types of knowledge. Future directions suggest to reinforce the multi-modal fusion of information sources and the communication with end-users. In this thesis we tackle the problem of recognizing and describing meaningful events in video sequences from different domains, and communicating the resulting knowledge to end-users by means of advanced interfaces for human–computer interaction. This problem is addressed by designing the high-level modules of a cognitive vision framework exploiting ontological knowledge. Ontologies allow us to define the relevant concepts in a domain and the relationships among them; we prove that the use of ontologies to organize, centralize, link, and reuse different types of knowledge is a key factor in the materialization of our objectives. The proposed framework contributes to: (i) automatically learn the characteristics of different scenarios in a domain; (ii) reason about uncertain, incomplete, or vague information from visual –camera’s– or linguistic –end-user’s– inputs; (iii) derive plausible interpretations of complex events from basic spatiotemporal developments; (iv) facilitate natural interfaces that adapt to the needs of end-users, and allow them to communicate efficiently with the system at different levels of interaction; and finally, (v) find mechanisms to guide modeling processes, maintain and extend the resulting models, and to exploit multimodal resources synergically to enhance the former tasks. We describe a holistic methodology to achieve these goals. First, the use of prior taxonomical knowledge is proved useful to guide MAP-MRF inference processes in the automatic identification of semantic regions, with independence of a particular scenario. Towards the recognition of complex video events, we combine fuzzy metric-temporal reasoning with SGTs, thus assessing high-level interpretations from spatiotemporal data. Here, ontological resources like T–Boxes, onomasticons, or factual databases become useful to derive video indexing and retrieval capabilities, and also to forward highlighted content to smart user interfaces. There, we explore the application of ontologies to discourse analysis and cognitive linguistic principles, or scene augmentation techniques towards advanced communication by means of natural language dialogs and synthetic visualizations. Ontologies become fundamental to coordinate, adapt, and reuse the different modules in the system. The suitability of our ontological framework is demonstrated by a series of applications that especially benefit the field of smart video surveillance, viz. automatic generation of linguistic reports about the content of video sequences in multiple natural languages; content-based filtering and summarization of these reports; dialogue-based interfaces to query and browse video contents; automatic learning of semantic regions in a scenario; and tools to evaluate the performance of components and models in the system, via simulation and augmented reality. |
Francisco Javier Orozco. (2010). Human Emotion Evaluation on Facial Image Sequences (Jordi Gonzalez, & Xavier Roca, Eds.). Ph.D. thesis, Ediciones Graficas Rey, .
Abstract: Psychological evidence has emphasized the importance of affective behaviour understanding due to its high impact in nowadays interaction humans and computers. All
type of affective and behavioural patterns such as gestures, emotions and mental states are highly displayed through the face, head and body. Therefore, this thesis is focused to analyse affective behaviours on head and face. To this end, head and facial movements are encoded by using appearance based tracking methods. Specifically, a wise combination of deformable models captures rigid and non-rigid movements of different kinematics; 3D head pose, eyebrows, mouth, eyelids and irises are taken into account as basis for extracting features from databases of video sequences. This approach combines the strengths of adaptive appearance models, optimization methods and backtracking techniques. For about thirty years, computer sciences have addressed the investigation on human emotions to the automatic recognition of six prototypic emotions suggested by Darwin and systematized by Paul Ekman in the seventies. The Facial Action Coding System (FACS) which uses discrete movements of the face (called Action units or AUs) to code the six facial emotions named anger, disgust, fear, happy-Joy, sadness and surprise. However, human emotions are much complex patterns that have not received the same attention from computer scientists. Simon Baron-Cohen proposed a new taxonomy of emotions and mental states without a system coding of the facial actions. These 426 affective behaviours are more challenging for the understanding of human emotions. Beyond of classically classifying the six basic facial expressions, more subtle gestures, facial actions and spontaneous emotions are considered here. By assessing confidence on the recognition results, exploring spatial and temporal relationships of the features, some methods are combined and enhanced for developing new taxonomy of expressions and emotions. The objective of this dissertation is to develop a computer vision system, including both facial feature extraction, expression recognition and emotion understanding by building a bottom-up reasoning process. Building a detailed taxonomy of human affective behaviours is an interesting challenge for head-face-based image analysis methods. In this paper, we exploit the strengths of Canonical Correlation Analysis (CCA) to enhance an on-line head-face tracker. A relationship between head pose and local facial movements is studied according to their cognitive interpretation on affective expressions and emotions. Active Shape Models are synthesized for AAMs based on CCA-regression. Head pose and facial actions are fused into a maximally correlated space in order to assess expressiveness, confidence and classification in a CBR system. The CBR solutions are also correlated to the cognitive features, which allow avoiding exhaustive search when recognizing new head-face features. Subsequently, Support Vector Machines (SVMs) and Bayesian Networks are applied for learning the spatial relationships of facial expressions. Similarly, the temporal evolution of facial expressions, emotion and mental states are analysed based on Factorized Dynamic Bayesian Networks (FaDBN). As results, the bottom-up system recognizes six facial expressions, six basic emotions and six mental states, plus enhancing this categorization with confidence assessment at each level, intensity of expressions and a complete taxonomy |
Ahmed Mounir Gad. (2010). Object Localization Enhancement by Multiple Segmentation Fusion (Vol. 152). Master's thesis, , . |
Lluis Pere de las Heras. (2010). Syntactic Model for Semantic Document Analysis (Vol. 158). |
Ekain Artola. (2010). Human Attention Map Prediction Combining Visual Features (Vol. 160). Bachelor's thesis, , . |
Jon Almazan. (2010). Deforming the Blurred Shape Model for Shape Description and Recognition (Vol. 163). Master's thesis, , . |
Partha Pratim Roy. (2010). Multi-Oriented and Multi-Scaled Text Character Analysis and Recognition in Graphical Documents and their Applications to Document Image Retrieval (Josep Llados, & Umapada Pal, Eds.). Ph.D. thesis, Ediciones Graficas Rey, .
Abstract: With the advent research of Document Image Analysis and Recognition (DIAR), an
important line of research is explored on indexing and retrieval of graphics rich documents. It aims at finding relevant documents relying on segmentation and recognition of text and graphics components underlying in non-standard layout where commercial OCRs can not be applied due to complexity. This thesis is focused towards text information extraction approaches in graphical documents and retrieval of such documents using text information. Automatic text recognition in graphical documents (map, engineering drawing, etc.) involves many challenges because text characters are usually printed in multioriented and multi-scale way along with different graphical objects. Text characters are used to annotate the graphical curve lines and hence, many times they follow curvi-linear paths too. For OCR of such documents, individual text lines and their corresponding words/characters need to be extracted. For recognition of multi-font, multi-scale and multi-oriented characters, we have proposed a feature descriptor for character shape using angular information from contour pixels to take care of the invariance nature. To improve the efficiency of OCR, an approach towards the segmentation of multi-oriented touching strings into individual characters is also discussed. Convex hull based background information is used to segment a touching string into possible primitive segments and later these primitive segments are merged to get optimum segmentation using dynamic programming. To overcome the touching/overlapping problem of text with graphical lines, a character spotting approach using SIFT and skeleton information is included. Afterwards, we propose a novel method to extract individual curvi-linear text lines using the foreground and background information of the characters of the text and a water reservoir concept is used to utilize the background information. We have also formulated the methodologies for graphical document retrieval applications using query words and seals. The retrieval approaches are performed using recognition results of individual components in the document. Given a query text, the system extracts positional knowledge from the query word and uses the same to generate hypothetical locations in the document. Indexing of documents is also performed based on automatic detection of seals from documents containing cluttered background. A seal is characterized by scale and rotation invariant spatial feature descriptors computed from labelled text characters and a concept based on the Generalized Hough Transform is used to locate the seal in documents. |
Thierry Brouard, A. Delaplace, Muhammad Muzzamil Luqman, H. Cardot, & Jean-Yves Ramel. (2010). Design of Evolutionary Methods Applied to the Learning of Bayesian Nerwork Structures. In Ahmed Rebai (Ed.), Bayesian Network (pp. 13–37). Sciyo. |
Jorge Bernal, & David Vazquez (Eds.). (2013). Computer vision Trends and Challenges.
Abstract: This book contains the papers presented at the Eighth CVC Workshop on Computer Vision Trends and Challenges (CVCR&D'2013). The workshop was held at the Computer Vision Center (Universitat Autònoma de Barcelona), the October 25th, 2013. The CVC workshops provide an excellent opportunity for young researchers and project engineers to share new ideas and knowledge about the progress of their work, and also, to discuss about challenges and future perspectives. In addition, the workshop is the welcome event for new people that recently have joined the institute.
The program of CVCR&D is organized in a single-track single-day workshop. It comprises several sessions dedicated to specific topics. For each session, a doctor working on the topic introduces the general research lines. The PhD students expose their specific research. A poster session will be held for open questions. Session topics cover the current research lines and development projects of the CVC: Medical Imaging, Medical Imaging, Color & Texture Analysis, Object Recognition, Image Sequence Evaluation, Advanced Driver Assistance Systems, Machine Vision, Document Analysis, Pattern Recognition and Applications. We want to thank all paper authors and Program Committee members. Their contribution shows that the CVC has a dynamic, active, and promising scientific community. We hope you all enjoy this Eighth workshop and we are looking forward to meeting you and new people next year in the Ninth CVCR&D. Keywords: CVCRD; Computer Vision
|
Hany Salah Eldeen. (2009). Colour Naming in Context through a Perceptual Model (Vol. 130). Master's thesis, , Bellaterra, Barcelona. |
Enric Sala. (2009). Off-line person-dependent signature verification (Vol. 146). Master's thesis, , Bellaterra, Barcelona. |
A.S. Coquel, Jean-Pascal Jacob, M. Primet, A. Demarez, Mariella Dimiccoli, T. Julou, et al. (2013). Localization of protein aggregation in Escherichia coli is governed by diffusion and nucleoid macromolecular crowding effect. PCB - Plos Computational Biology, 9(4).
Abstract: Aggregates of misfolded proteins are a hallmark of many age-related diseases. Recently, they have been linked to aging of Escherichia coli (E. coli) where protein aggregates accumulate at the old pole region of the aging bacterium. Because of the potential of E. coli as a model organism, elucidating aging and protein aggregation in this bacterium may pave the way to significant advances in our global understanding of aging. A first obstacle along this path is to decipher the mechanisms by which protein aggregates are targeted to specific intercellular locations. Here, using an integrated approach based on individual-based modeling, time-lapse fluorescence microscopy and automated image analysis, we show that the movement of aging-related protein aggregates in E. coli is purely diffusive (Brownian). Using single-particle tracking of protein aggregates in live E. coli cells, we estimated the average size and diffusion constant of the aggregates. Our results provide evidence that the aggregates passively diffuse within the cell, with diffusion constants that depend on their size in agreement with the Stokes-Einstein law. However, the aggregate displacements along the cell long axis are confined to a region that roughly corresponds to the nucleoid-free space in the cell pole, thus confirming the importance of increased macromolecular crowding in the nucleoids. We thus used 3D individual-based modeling to show that these three ingredients (diffusion, aggregation and diffusion hindrance in the nucleoids) are sufficient and necessary to reproduce the available experimental data on aggregate localization in the cells. Taken together, our results strongly support the hypothesis that the localization of aging-related protein aggregates in the poles of E. coli results from the coupling of passive diffusion-aggregation with spatially non-homogeneous macromolecular crowding. They further support the importance of “soft” intracellular structuring (based on macromolecular crowding) in diffusion-based protein localization in E. coli.
|
Yasuko Sugito, Javier Vazquez, Trevor Canham, & Marcelo Bertalmio. (2022). Image quality evaluation in professional HDR/WCG production questions the need for HDR metrics. TIP - IEEE Transactions on Image Processing, 31, 5163–5177.
Abstract: In the quality evaluation of high dynamic range and wide color gamut (HDR/WCG) images, a number of works have concluded that native HDR metrics, such as HDR visual difference predictor (HDR-VDP), HDR video quality metric (HDR-VQM), or convolutional neural network (CNN)-based visibility metrics for HDR content, provide the best results. These metrics consider only the luminance component, but several color difference metrics have been specifically developed for, and validated with, HDR/WCG images. In this paper, we perform subjective evaluation experiments in a professional HDR/WCG production setting, under a real use case scenario. The results are quite relevant in that they show, firstly, that the performance of HDR metrics is worse than that of a classic, simple standard dynamic range (SDR) metric applied directly to the HDR content; and secondly, that the chrominance metrics specifically developed for HDR/WCG imaging have poor correlation with observer scores and are also outperformed by an SDR metric. Based on these findings, we show how a very simple framework for creating color HDR metrics, that uses only luminance SDR metrics, transfer functions, and classic color spaces, is able to consistently outperform, by a considerable margin, state-of-the-art HDR metrics on a varied set of HDR content, for both perceptual quantization (PQ) and Hybrid Log-Gamma (HLG) encoding, luminance and chroma distortions, and on different color spaces of common use.
Keywords: Measurement; Image color analysis; Image coding; Production; Dynamic range; Brightness; Extraterrestrial measurements
|
Onur Ferhat, Fernando Vilariño, & F. Javier Sanchez. (2014). A cheap portable eye-tracker solution for common setups. JEMR - Journal of Eye Movement Research, 7(3), 1–10.
Abstract: We analyze the feasibility of a cheap eye-tracker where the hardware consists of a single webcam and a Raspberry Pi device. Our aim is to discover the limits of such a system and to see whether it provides an acceptable performance. We base our work on the open source Opengazer (Zielinski, 2013) and we propose several improvements to create a robust, real-time system which can work on a computer with 30Hz sampling rate. After assessing the accuracy of our eye-tracker in elaborated experiments involving 12 subjects under 4 different system setups, we install it on a Raspberry Pi to create a portable stand-alone eye-tracker which achieves 1.42° horizontal accuracy with 3Hz refresh rate for a building cost of 70 Euros.
|
Joan M. Nuñez, Jorge Bernal, F. Javier Sanchez, & Fernando Vilariño. (2015). Growing Algorithm for Intersection Detection (GRAID) in branching patterns. MVAP - Machine Vision and Applications, 26(2), 387–400.
Abstract: Analysis of branching structures represents a very important task in fields such as medical diagnosis, road detection or biometrics. Detecting intersection landmarks Becomes crucial when capturing the structure of a branching pattern. We present a very simple geometrical model to describe intersections in branching structures based on two conditions: Bounded Tangency condition (BT) and Shortest Branch (SB) condition. The proposed model precisely sets a geometrical characterization of intersections and allows us to introduce a new unsupervised operator for intersection extraction. We propose an implementation that handles the consequences of digital domain operation that,unlike existing approaches, is not restricted to a particular scale and does not require the computation of the thinned pattern. The new proposal, as well as other existing approaches in the bibliography, are evaluated in a common framework for the first time. The performance analysis is based on two manually segmented image data sets: DRIVE retinal image database and COLON-VESSEL data set, a newly created data set of vascular content in colonoscopy frames. We have created an intersection landmark ground truth for each data set besides comparing our method in the only existing ground truth. Quantitative results confirm that we are able to outperform state-of-the-art performancelevels with the advantage that neither training nor parameter tuning is needed.
Keywords: Bifurcation ; Crossroad; Intersection ;Retina ; Vessel
|