|   | 
Details
   web
Records
Author Katerine Diaz; Jesus Martinez del Rincon; Aura Hernandez-Sabate
Title Decremental generalized discriminative common vectors applied to images classification Type Journal Article
Year 2017 Publication Knowledge-Based Systems Abbreviated Journal KBS
Volume 131 Issue Pages 46-57
Keywords Decremental learning; Generalized Discriminative Common Vectors; Feature extraction; Linear subspace methods; Classification
Abstract In this paper, a novel decremental subspace-based learning method called Decremental Generalized Discriminative Common Vectors method (DGDCV) is presented. The method makes use of the concept of decremental learning, which we introduce in the field of supervised feature extraction and classification. By efficiently removing unnecessary data and/or classes for a knowledge base, our methodology is able to update the model without recalculating the full projection or accessing to the previously processed training data, while retaining the previously acquired knowledge. The proposed method has been validated in 6 standard face recognition datasets, showing a considerable computational gain without compromising the accuracy of the model.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (down) ADAS; 600.118; 600.121 Approved no
Call Number Admin @ si @ DMH2017a Serial 3003
Permanent link to this record
 

 
Author Daniel Hernandez; Antonio Espinosa; David Vazquez; Antonio Lopez; Juan Carlos Moure
Title GPU-accelerated real-time stixel computation Type Conference Article
Year 2017 Publication IEEE Winter Conference on Applications of Computer Vision Abbreviated Journal
Volume Issue Pages 1054-1062
Keywords Autonomous Driving; GPU; Stixel
Abstract The Stixel World is a medium-level, compact representation of road scenes that abstracts millions of disparity pixels into hundreds or thousands of stixels. The goal of this work is to implement and evaluate a complete multi-stixel estimation pipeline on an embedded, energyefficient, GPU-accelerated device. This work presents a full GPU-accelerated implementation of stixel estimation that produces reliable results at 26 frames per second (real-time) on the Tegra X1 for disparity images of 1024×440 pixels and stixel widths of 5 pixels, and achieves more than 400 frames per second on a high-end Titan X GPU card.
Address Santa Rosa; CA; USA; March 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference WACV
Notes (down) ADAS; 600.118 Approved no
Call Number ADAS @ adas @ HEV2017b Serial 2812
Permanent link to this record
 

 
Author Daniel Hernandez; Lukas Schneider; Antonio Espinosa; David Vazquez; Antonio Lopez; Uwe Franke; Marc Pollefeys; Juan C. Moure
Title Slanted Stixels: Representing San Francisco's Steepest Streets Type Conference Article
Year 2017 Publication 28th British Machine Vision Conference Abbreviated Journal
Volume Issue Pages
Keywords
Abstract In this work we present a novel compact scene representation based on Stixels that infers geometric and semantic information. Our approach overcomes the previous rather restrictive geometric assumptions for Stixels by introducing a novel depth model to account for non-flat roads and slanted objects. Both semantic and depth cues are used jointly to infer the scene representation in a sound global energy minimization formulation. Furthermore, a novel approximation scheme is introduced that uses an extremely efficient over-segmentation. In doing so, the computational complexity of the Stixel inference algorithm is reduced significantly, achieving real-time computation capabilities with only a slight drop in accuracy. We evaluate the proposed approach in terms of semantic and geometric accuracy as well as run-time on four publicly available benchmark datasets. Our approach maintains accuracy on flat road scene datasets while improving substantially on a novel non-flat road dataset.
Address London; uk; September 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference BMVC
Notes (down) ADAS; 600.118 Approved no
Call Number ADAS @ adas @ HSE2017a Serial 2945
Permanent link to this record
 

 
Author Daniel Hernandez; Antonio Espinosa; David Vazquez; Antonio Lopez; Juan Carlos Moure
Title Embedded Real-time Stixel Computation Type Conference Article
Year 2017 Publication GPU Technology Conference Abbreviated Journal
Volume Issue Pages
Keywords GPU; CUDA; Stixels; Autonomous Driving
Abstract
Address Silicon Valley; USA; May 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference GTC
Notes (down) ADAS; 600.118 Approved no
Call Number ADAS @ adas @ HEV2017a Serial 2879
Permanent link to this record
 

 
Author David Geronimo; David Vazquez; Arturo de la Escalera
Title Vision-Based Advanced Driver Assistance Systems Type Book Chapter
Year 2017 Publication Computer Vision in Vehicle Technology: Land, Sea, and Air Abbreviated Journal
Volume Issue Pages
Keywords ADAS; Autonomous Driving
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (down) ADAS; 600.118 Approved no
Call Number ADAS @ adas @ GVE2017 Serial 2881
Permanent link to this record
 

 
Author Victor Vaquero; German Ros; Francesc Moreno-Noguer; Antonio Lopez; Alberto Sanfeliu
Title Joint coarse-and-fine reasoning for deep optical flow Type Conference Article
Year 2017 Publication 24th International Conference on Image Processing Abbreviated Journal
Volume Issue Pages 2558-2562
Keywords
Abstract We propose a novel representation for dense pixel-wise estimation tasks using CNNs that boosts accuracy and reduces training time, by explicitly exploiting joint coarse-and-fine reasoning. The coarse reasoning is performed over a discrete classification space to obtain a general rough solution, while the fine details of the solution are obtained over a continuous regression space. In our approach both components are jointly estimated, which proved to be beneficial for improving estimation accuracy. Additionally, we propose a new network architecture, which combines coarse and fine components by treating the fine estimation as a refinement built on top of the coarse solution, and therefore adding details to the general prediction. We apply our approach to the challenging problem of optical flow estimation and empirically validate it against state-of-the-art CNN-based solutions trained from scratch and tested on large optical flow datasets.
Address Beijing; China; September 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICIP
Notes (down) ADAS; 600.118 Approved no
Call Number Admin @ si @ VRM2017 Serial 2898
Permanent link to this record
 

 
Author Antonio Lopez; Atsushi Imiya; Tomas Pajdla; Jose Manuel Alvarez
Title Computer Vision in Vehicle Technology: Land, Sea & Air Type Book Whole
Year 2017 Publication Abbreviated Journal
Volume Issue Pages 161-163
Keywords
Abstract Summary This chapter examines different vision-based commercial solutions for real-live problems related to vehicles. It is worth mentioning the recent astonishing performance of deep convolutional neural networks (DCNNs) in difficult visual tasks such as image classification, object recognition/localization/detection, and semantic segmentation. In fact,
different DCNN architectures are already being explored for low-level tasks such as optical flow and disparity computation, and higher level ones such as place recognition.
Address
Corporate Author Thesis
Publisher John Wiley & Sons, Ltd Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-1-118-86807-2 Medium
Area Expedition Conference
Notes (down) ADAS; 600.118 Approved no
Call Number Admin @ si @ LIP2017a Serial 2937
Permanent link to this record
 

 
Author Antonio Lopez; Gabriel Villalonga; Laura Sellart; German Ros; David Vazquez; Jiaolong Xu; Javier Marin; Azadeh S. Mozafari
Title Training my car to see using virtual worlds Type Journal Article
Year 2017 Publication Image and Vision Computing Abbreviated Journal IMAVIS
Volume 38 Issue Pages 102-118
Keywords
Abstract Computer vision technologies are at the core of different advanced driver assistance systems (ADAS) and will play a key role in oncoming autonomous vehicles too. One of the main challenges for such technologies is to perceive the driving environment, i.e. to detect and track relevant driving information in a reliable manner (e.g. pedestrians in the vehicle route, free space to drive through). Nowadays it is clear that machine learning techniques are essential for developing such a visual perception for driving. In particular, the standard working pipeline consists of collecting data (i.e. on-board images), manually annotating the data (e.g. drawing bounding boxes around pedestrians), learning a discriminative data representation taking advantage of such annotations (e.g. a deformable part-based model, a deep convolutional neural network), and then assessing the reliability of such representation with the acquired data. In the last two decades most of the research efforts focused on representation learning (first, designing descriptors and learning classifiers; later doing it end-to-end). Hence, collecting data and, especially, annotating it, is essential for learning good representations. While this has been the case from the very beginning, only after the disruptive appearance of deep convolutional neural networks that it became a serious issue due to their data hungry nature. In this context, the problem is that manual data annotation is a tiresome work prone to errors. Accordingly, in the late 00’s we initiated a research line consisting of training visual models using photo-realistic computer graphics, especially focusing on assisted and autonomous driving. In this paper, we summarize such a work and show how it has become a new tendency with increasing acceptance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (down) ADAS; 600.118 Approved no
Call Number Admin @ si @ LVS2017 Serial 2985
Permanent link to this record
 

 
Author Katerine Diaz; Konstantia Georgouli; Anastasios Koidis; Jesus Martinez del Rincon
Title Incremental model learning for spectroscopy-based food analysis Type Journal Article
Year 2017 Publication Chemometrics and Intelligent Laboratory Systems Abbreviated Journal CILS
Volume 167 Issue Pages 123-131
Keywords Incremental model learning; IGDCV technique; Subspace based learning; IdentificationVegetable oils; FT-IR spectroscopy
Abstract In this paper we propose the use of incremental learning for creating and improving multivariate analysis models in the field of chemometrics of spectral data. As main advantages, our proposed incremental subspace-based learning allows creating models faster, progressively improving previously created models and sharing them between laboratories and institutions without requiring transferring or disclosing individual spectra samples. In particular, our approach allows to improve the generalization and adaptability of previously generated models with a few new spectral samples to be applicable to real-world situations. The potential of our approach is demonstrated using vegetable oil type identification based on spectroscopic data as case study. Results show how incremental models maintain the accuracy of batch learning methodologies while reducing their computational cost and handicaps.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (down) ADAS; 600.118 Approved no
Call Number Admin @ si @ DGK2017 Serial 3002
Permanent link to this record
 

 
Author Cristhian Aguilera
Title Local feature description in cross-spectral imagery Type Book Whole
Year 2017 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Over the last few years, the number of consumer computer vision applications has increased dramatically. Today, computer vision solutions can be found in video game consoles, smartphone applications, driving assistance – just to name a few. Ideally, we require the performance of those applications, particularly those that are safety critical to remain constant under any external environment factors, such as changes in illumination or weather conditions. However, this is not always possible or very difficult to obtain by only using visible imagery, due to the inherent limitations of the images from that spectral band. For that reason, the use of images from different or multiple spectral bands is becoming more appealing.
The aforementioned possible advantages of using images from multiples spectral bands on various vision applications make multi-spectral image processing a relevant topic for research and development. Like in visible image processing, multi-spectral image processing needs tools and algorithms to handle information from various spectral bands. Furthermore, traditional tools such as local feature detection, which is the basis of many vision tasks such as visual odometry, image registration, or structure from motion, must be adjusted or reformulated to operate under new conditions. Traditional feature detection, description, and matching methods tend to underperform in multi-spectral settings, in comparison to mono-spectral settings, due to the natural differences between each spectral band.
The work in this thesis is focused on the local feature description problem when cross-spectral images are considered. In this context, this dissertation has three main contributions. Firstly, the work starts by proposing the usage of a combination of frequency and spatial information, in a multi-scale scheme, as feature description. Evaluations of this proposal, based on classical hand-made feature descriptors, and comparisons with state of the art cross-spectral approaches help to find and understand limitations of such strategy. Secondly, different convolutional neural network (CNN) based architectures are evaluated when used to describe cross-spectral image patches. Results showed that CNN-based methods, designed to work with visible monocular images, could be successfully applied to the description of images from two different spectral bands, with just minor modifications. In this framework, a novel CNN-based network model, specifically intended to describe image patches from two different spectral bands, is proposed. This network, referred to as Q-Net, outperforms state of the art in the cross-spectral domain, including both previous hand-made solutions as well as L2 CNN-based architectures. The third contribution of this dissertation is in the cross-spectral feature description application domain. The multispectral odometry problem is tackled showing a real application of cross-spectral descriptors
In addition to the three main contributions mentioned above, in this dissertation, two different multi-spectral datasets are generated and shared with the community to be used as benchmarks for further studies.
Address October 2017
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor Angel Sappa
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-945373-6-3 Medium
Area Expedition Conference
Notes (down) ADAS; 600.118 Approved no
Call Number Admin @ si @ Agu2017 Serial 3020
Permanent link to this record
 

 
Author Konstantia Georgouli; Katerine Diaz; Jesus Martinez del Rincon; Anastasios Koidis
Title Building generic, easily-updatable chemometric models with harmonisation and augmentation features: The case of FTIR vegetable oils classification Type Conference Article
Year 2017 Publication 3rd Ιnternational Conference Metrology Promoting Standardization and Harmonization in Food and Nutrition Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address Thessaloniki; Greece; October 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference IMEKOFOODS
Notes (down) ADAS; 600.118 Approved no
Call Number Admin @ si @ GDM2017 Serial 3081
Permanent link to this record
 

 
Author Cristhian A. Aguilera-Carrasco; Angel Sappa; Cristhian Aguilera; Ricardo Toledo
Title Cross-Spectral Local Descriptors via Quadruplet Network Type Journal Article
Year 2017 Publication Sensors Abbreviated Journal SENS
Volume 17 Issue 4 Pages 873
Keywords
Abstract This paper presents a novel CNN-based architecture, referred to as Q-Net, to learn local feature descriptors that are useful for matching image patches from two different spectral bands. Given correctly matched and non-matching cross-spectral image pairs, a quadruplet network is trained to map input image patches to a common Euclidean space, regardless of the input spectral band. Our approach is inspired by the recent success of triplet networks in the visible spectrum, but adapted for cross-spectral scenarios, where, for each matching pair, there are always two possible non-matching patches: one for each spectrum. Experimental evaluations on a public cross-spectral VIS-NIR dataset shows that the proposed approach improves the state-of-the-art. Moreover, the proposed technique can also be used in mono-spectral settings, obtaining a similar performance to triplet network descriptors, but requiring less training data.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (down) ADAS; 600.086; 600.118 Approved no
Call Number Admin @ si @ ASA2017 Serial 2914
Permanent link to this record
 

 
Author Patricia Suarez; Angel Sappa; Boris X. Vintimilla
Title Cross-Spectral Image Patch Similarity using Convolutional Neural Network Type Conference Article
Year 2017 Publication IEEE International Workshop of Electronics, Control, Measurement, Signals and their application to Mechatronics Abbreviated Journal
Volume Issue Pages
Keywords
Abstract The ability to compare image regions (patches) has been the basis of many approaches to core computer vision problems, including object, texture and scene categorization. Hence, developing representations for image patches have been of interest in several works. The current work focuses on learning similarity between cross-spectral image patches with a 2 channel convolutional neural network (CNN) model. The proposed approach is an adaptation of a previous work, trying to obtain similar results than the state of the art but with a lowcost hardware. Hence, obtained results are compared with both
classical approaches, showing improvements, and a state of the art CNN based approach.
Address San Sebastian; Spain; May 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ECMSM
Notes (down) ADAS; 600.086; 600.118 Approved no
Call Number Admin @ si @ SSV2017a Serial 2916
Permanent link to this record
 

 
Author Angel Valencia; Roger Idrovo; Angel Sappa; Douglas Plaza; Daniel Ochoa
Title A 3D Vision Based Approach for Optimal Grasp of Vacuum Grippers Type Conference Article
Year 2017 Publication IEEE International Workshop of Electronics, Control, Measurement, Signals and their application to Mechatronics Abbreviated Journal
Volume Issue Pages
Keywords
Abstract In general, robot grasping approaches are based on the usage of multi-finger grippers. However, when large size objects need to be manipulated vacuum grippers are preferred, instead of finger based grippers. This paper aims to estimate the best picking place for a two suction cups vacuum gripper,
when planar objects with an unknown size and geometry are considered. The approach is based on the estimation of geometric properties of object’s shape from a partial cloud of points (a single 3D view), in such a way that combine with considerations of a theoretical model to generate an optimal contact point
that minimizes the vacuum force needed to guarantee a grasp.
Experimental results in real scenarios are presented to show the validity of the proposed approach.
Address San Sebastian; Spain; May 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ECMSM
Notes (down) ADAS; 600.086; 600.118 Approved no
Call Number Admin @ si @ VIS2017 Serial 2917
Permanent link to this record
 

 
Author Patricia Suarez; Angel Sappa; Boris X. Vintimilla
Title Infrared Image Colorization based on a Triplet DCGAN Architecture Type Conference Article
Year 2017 Publication IEEE Conference on Computer Vision and Pattern Recognition Workshops Abbreviated Journal
Volume Issue Pages
Keywords
Abstract This paper proposes a novel approach for colorizing near infrared (NIR) images using Deep Convolutional Generative Adversarial Network (GAN) architectures. The proposed approach is based on the usage of a triplet model for learning each color channel independently, in a more homogeneous way. It allows a fast convergence during the training, obtaining a greater similarity between the given NIR image and the corresponding ground truth. The proposed approach has been evaluated with a large data set of NIR images and compared with a recent approach, which is also based on a GAN architecture but in this case all the
color channels are obtained at the same time.
Address Honolulu; Hawaii; USA; July 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPRW
Notes (down) ADAS; 600.086; 600.118 Approved no
Call Number Admin @ si @ SSV2017b Serial 2920
Permanent link to this record