toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Damian Sojka; Yuyang Liu; Dipam Goswami; Sebastian Cygert; Bartłomiej Twardowski; Joost van de Weijer edit   pdf
url  openurl
  Title Technical Report for ICCV 2023 Visual Continual Learning Challenge: Continuous Test-time Adaptation for Semantic Segmentation Type Miscellaneous
  Year 2023 Publication Arxiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract The goal of the challenge is to develop a test-time adaptation (TTA) method, which could adapt the model to gradually changing domains in video sequences for semantic segmentation task. It is based on a synthetic driving video dataset – SHIFT. The source model is trained on images taken during daytime in clear weather. Domain changes at test-time are mainly caused by varying weather conditions and times of day. The TTA methods are evaluated in each image sequence (video) separately, meaning the model is reset to the source model state before the next sequence. Images come one by one and a prediction has to be made at the arrival of each frame. Each sequence is composed of 401 images and starts with the source domain, then gradually drifts to a different one (changing weather or time of day) until the middle of the sequence. In the second half of the sequence, the domain gradually shifts back to the source one. Ground truth data is available only for the validation split of the SHIFT dataset, in which there are only six sequences that start and end with the source domain. We conduct an analysis specifically on those sequences. Ground truth data for test split, on which the developed TTA methods are evaluated for leader board ranking, are not publicly available.
The proposed solution secured a 3rd place in a challenge and received an innovation award. Contrary to the solutions that scored better, we did not use any external pretrained models or specialized data augmentations, to keep the solutions as general as possible. We have focused on analyzing the distributional shift and developing a method that could adapt to changing data dynamics and generalize across different scenarios.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) LAMP Approved no  
  Call Number Admin @ si @ SLG2023 Serial 3993  
Permanent link to this record
 

 
Author Mert Kilickaya; Joost van de Weijer; Yuki M. Asano edit   pdf
url  openurl
  Title Towards Label-Efficient Incremental Learning: A Survey Type Miscellaneous
  Year 2023 Publication Arxiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract The current dominant paradigm when building a machine learning model is to iterate over a dataset over and over until convergence. Such an approach is non-incremental, as it assumes access to all images of all categories at once. However, for many applications, non-incremental learning is unrealistic. To that end, researchers study incremental learning, where a learner is required to adapt to an incoming stream of data with a varying distribution while preventing forgetting of past knowledge. Significant progress has been made, however, the vast majority of works focus on the fully supervised setting, making these algorithms label-hungry thus limiting their real-life deployment. To that end, in this paper, we make the first attempt to survey recently growing interest in label-efficient incremental learning. We identify three subdivisions, namely semi-, few-shot- and self-supervised learning to reduce labeling efforts. Finally, we identify novel directions that can further enhance label-efficiency and improve incremental learning scalability. Project website: this https URL.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) LAMP Approved no  
  Call Number Admin @ si @ KWA2023 Serial 3994  
Permanent link to this record
 

 
Author Simone Zini; Alex Gomez-Villa; Marco Buzzelli; Bartlomiej Twardowski; Andrew D. Bagdanov; Joost Van de Weijer edit   pdf
url  openurl
  Title Planckian Jitter: countering the color-crippling effects of color jitter on self-supervised training Type Conference Article
  Year 2023 Publication 11th International Conference on Learning Representations Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Several recent works on self-supervised learning are trained by mapping different augmentations of the same image to the same feature representation. The data augmentations used are of crucial importance to the quality of learned feature representations. In this paper, we analyze how the color jitter traditionally used in data augmentation negatively impacts the quality of the color features in learned feature representations. To address this problem, we propose a more realistic, physics-based color data augmentation – which we call Planckian Jitter – that creates realistic variations in chromaticity and produces a model robust to illumination changes that can be commonly observed in real life, while maintaining the ability to discriminate image content based on color information. Experiments confirm that such a representation is complementary to the representations learned with the currently-used color jitter augmentation and that a simple concatenation leads to significant performance gains on a wide range of downstream datasets. In addition, we present a color sensitivity analysis that documents the impact of different training methods on model neurons and shows that the performance of the learned features is robust with respect to illuminant variations.  
  Address 1 -5 May 2023, Kigali, Ruanda  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICLR  
  Notes (up) LAMP; 600.147; 611.008; 5300006 Approved no  
  Call Number Admin @ si @ ZGB2023 Serial 3820  
Permanent link to this record
 

 
Author Shiqi Yang; Yaxing Wang; Luis Herranz; Shangling Jui; Joost Van de Weijer edit  url
openurl 
  Title Casting a BAIT for offline and online source-free domain adaptation Type Journal Article
  Year 2023 Publication Computer Vision and Image Understanding Abbreviated Journal CVIU  
  Volume 234 Issue Pages 103747  
  Keywords  
  Abstract We address the source-free domain adaptation (SFDA) problem, where only the source model is available during adaptation to the target domain. We consider two settings: the offline setting where all target data can be visited multiple times (epochs) to arrive at a prediction for each target sample, and the online setting where the target data needs to be directly classified upon arrival. Inspired by diverse classifier based domain adaptation methods, in this paper we introduce a second classifier, but with another classifier head fixed. When adapting to the target domain, the additional classifier initialized from source classifier is expected to find misclassified features. Next, when updating the feature extractor, those features will be pushed towards the right side of the source decision boundary, thus achieving source-free domain adaptation. Experimental results show that the proposed method achieves competitive results for offline SFDA on several benchmark datasets compared with existing DA and SFDA methods, and our method surpasses by a large margin other SFDA methods under online source-free domain adaptation setting.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) LAMP; MACO Approved no  
  Call Number Admin @ si @ YWH2023 Serial 3874  
Permanent link to this record
 

 
Author Shiqi Yang; Yaxing Wang; Joost Van de Weijer; Luis Herranz; Shangling Jui; Jian Yang edit  url
doi  openurl
  Title Trust Your Good Friends: Source-Free Domain Adaptation by Reciprocal Neighborhood Clustering Type Journal Article
  Year 2023 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 45 Issue 12 Pages 15883-15895  
  Keywords  
  Abstract Domain adaptation (DA) aims to alleviate the domain shift between source domain and target domain. Most DA methods require access to the source data, but often that is not possible (e.g., due to data privacy or intellectual property). In this paper, we address the challenging source-free domain adaptation (SFDA) problem, where the source pretrained model is adapted to the target domain in the absence of source data. Our method is based on the observation that target data, which might not align with the source domain classifier, still forms clear clusters. We capture this intrinsic structure by defining local affinity of the target data, and encourage label consistency among data with high local affinity. We observe that higher affinity should be assigned to reciprocal neighbors. To aggregate information with more context, we consider expanded neighborhoods with small affinity values. Furthermore, we consider the density around each target sample, which can alleviate the negative impact of potential outliers. In the experimental results we verify that the inherent structure of the target features is an important source of information for domain adaptation. We demonstrate that this local structure can be efficiently captured by considering the local neighbors, the reciprocal neighbors, and the expanded neighborhood. Finally, we achieve state-of-the-art performance on several 2D image and 3D point cloud recognition datasets.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) LAMP; MACO Approved no  
  Call Number Admin @ si @ YWW2023 Serial 3889  
Permanent link to this record
 

 
Author Yifan Wang; Luka Murn; Luis Herranz; Fei Yang; Marta Mrak; Wei Zhang; Shuai Wan; Marc Gorriz Blanch edit  url
doi  openurl
  Title Efficient Super-Resolution for Compression Of Gaming Videos Type Conference Article
  Year 2023 Publication IEEE International Conference on Acoustics, Speech and Signal Processing Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Due to the increasing demand for game-streaming services, efficient compression of computer-generated video is more critical than ever, especially when the available bandwidth is low. This paper proposes a super-resolution framework that improves the coding efficiency of computer-generated gaming videos at low bitrates. Most state-of-the-art super-resolution networks generalize over a variety of RGB inputs and use a unified network architecture for frames of different levels of degradation, leading to high complexity and redundancy. Since games usually consist of a limited number of fixed scenarios, we specialize one model for each scenario and assign appropriate network capacities for different QPs to perform super-resolution under the guidance of reconstructed high-quality luma components. Experimental results show that our framework achieves a superior quality-complexity trade-off compared to the ESRnet baseline, saving at most 93.59% parameters while maintaining comparable performance. The compression efficiency compared to HEVC is also improved by more than 17% BD-rate gain.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICASSP  
  Notes (up) LAMP; MACO Approved no  
  Call Number Admin @ si @ WMH2023 Serial 3911  
Permanent link to this record
 

 
Author Eduardo Aguilar; Bogdan Raducanu; Petia Radeva; Joost Van de Weijer edit   pdf
url  doi
openurl 
  Title Continual Evidential Deep Learning for Out-of-Distribution Detection Type Conference Article
  Year 2023 Publication IEEE/CVF International Conference on Computer Vision (ICCV) Workshops -Visual Continual Learning workshop Abbreviated Journal  
  Volume Issue Pages 3444-3454  
  Keywords  
  Abstract Uncertainty-based deep learning models have attracted a great deal of interest for their ability to provide accurate and reliable predictions. Evidential deep learning stands out achieving remarkable performance in detecting out-of-distribution (OOD) data with a single deterministic neural network. Motivated by this fact, in this paper we propose the integration of an evidential deep learning method into a continual learning framework in order to perform simultaneously incremental object classification and OOD detection. Moreover, we analyze the ability of vacuity and dissonance to differentiate between in-distribution data belonging to old classes and OOD data. The proposed method, called CEDL, is evaluated on CIFAR-100 considering two settings consisting of 5 and 10 tasks, respectively. From the obtained results, we could appreciate that the proposed method, in addition to provide comparable results in object classification with respect to the baseline, largely outperforms OOD detection compared to several posthoc methods on three evaluation metrics: AUROC, AUPR and FPR95.  
  Address Paris; France; October 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICCVW  
  Notes (up) LAMP; MILAB Approved no  
  Call Number Admin @ si @ ARR2023 Serial 3841  
Permanent link to this record
 

 
Author Eduardo Aguilar; Bogdan Raducanu; Petia Radeva; Joost Van de Weijer edit  url
openurl 
  Title Continual Evidential Deep Learning for Out-of-Distribution Detection Type Conference Article
  Year 2023 Publication Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops Abbreviated Journal  
  Volume Issue Pages 3444-3454  
  Keywords  
  Abstract Uncertainty-based deep learning models have attracted a great deal of interest for their ability to provide accurate and reliable predictions. Evidential deep learning stands out achieving remarkable performance in detecting out-ofdistribution (OOD) data with a single deterministic neural network. Motivated by this fact, in this paper we propose the integration of an evidential deep learning method into a continual learning framework in order to perform simultaneously incremental object classification and OOD detection. Moreover, we analyze the ability of vacuity and dissonance to differentiate between in-distribution data belonging to old classes and OOD data. The proposed method 1, called CEDL, is evaluated on CIFAR-100 considering two settings consisting of 5 and 10 tasks, respectively. From the obtained results, we could appreciate that the proposed method, in addition to provide comparable results in object classification with respect to the baseline, largely outperforms OOD detection compared to several posthoc methods on three evaluation metrics: AUROC, AUPR and FPR95.  
  Address Paris; France; October 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICCVW  
  Notes (up) LAMP; MILAB Approved no  
  Call Number Admin @ si @ ARR2023 Serial 3974  
Permanent link to this record
 

 
Author Akshita Gupta; Sanath Narayan; Salman Khan; Fahad Shahbaz Khan; Ling Shao; Joost Van de Weijer edit  doi
openurl 
  Title Generative Multi-Label Zero-Shot Learning Type Journal Article
  Year 2023 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 45 Issue 12 Pages 14611-14624  
  Keywords Generalized zero-shot learning; Multi-label classification; Zero-shot object detection; Feature synthesis  
  Abstract Multi-label zero-shot learning strives to classify images into multiple unseen categories for which no data is available during training. The test samples can additionally contain seen categories in the generalized variant. Existing approaches rely on learning either shared or label-specific attention from the seen classes. Nevertheless, computing reliable attention maps for unseen classes during inference in a multi-label setting is still a challenge. In contrast, state-of-the-art single-label generative adversarial network (GAN) based approaches learn to directly synthesize the class-specific visual features from the corresponding class attribute embeddings. However, synthesizing multi-label features from GANs is still unexplored in the context of zero-shot setting. When multiple objects occur jointly in a single image, a critical question is how to effectively fuse multi-class information. In this work, we introduce different fusion approaches at the attribute-level, feature-level and cross-level (across attribute and feature-levels) for synthesizing multi-label features from their corresponding multi-label class embeddings. To the best of our knowledge, our work is the first to tackle the problem of multi-label feature synthesis in the (generalized) zero-shot setting. Our cross-level fusion-based generative approach outperforms the state-of-the-art on three zero-shot benchmarks: NUS-WIDE, Open Images and MS COCO. Furthermore, we show the generalization capabilities of our fusion approach in the zero-shot detection task on MS COCO, achieving favorable performance against existing methods.  
  Address December 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) LAMP; PID2021-128178OB-I00 Approved no  
  Call Number Admin @ si @ Serial 3853  
Permanent link to this record
 

 
Author Jaykishan Patel; Alban Flachot; Javier Vazquez; David H. Brainard; Thomas S. A. Wallis; Marcus A. Brubaker; Richard F. Murray edit  url
openurl 
  Title A deep convolutional neural network trained to infer surface reflectance is deceived by mid-level lightness illusions Type Journal Article
  Year 2023 Publication Journal of Vision Abbreviated Journal JV  
  Volume 23 Issue 9 Pages 4817-4817  
  Keywords  
  Abstract A long-standing view is that lightness illusions are by-products of strategies employed by the visual system to stabilize its perceptual representation of surface reflectance against changes in illumination. Computationally, one such strategy is to infer reflectance from the retinal image, and to base the lightness percept on this inference. CNNs trained to infer reflectance from images have proven successful at solving this problem under limited conditions. To evaluate whether these CNNs provide suitable starting points for computational models of human lightness perception, we tested a state-of-the-art CNN on several lightness illusions, and compared its behaviour to prior measurements of human performance. We trained a CNN (Yu & Smith, 2019) to infer reflectance from luminance images. The network had a 30-layer hourglass architecture with skip connections. We trained the network via supervised learning on 100K images, rendered in Blender, each showing randomly placed geometric objects (surfaces, cubes, tori, etc.), with random Lambertian reflectance patterns (solid, Voronoi, or low-pass noise), under randomized point+ambient lighting. The renderer also provided the ground-truth reflectance images required for training. After training, we applied the network to several visual illusions. These included the argyle, Koffka-Adelson, snake, White’s, checkerboard assimilation, and simultaneous contrast illusions, along with their controls where appropriate. The CNN correctly predicted larger illusions in the argyle, Koffka-Adelson, and snake images than in their controls. It also correctly predicted an assimilation effect in White's illusion. It did not, however, account for the checkerboard assimilation or simultaneous contrast effects. These results are consistent with the view that at least some lightness phenomena are by-products of a rational approach to inferring stable representations of physical properties from intrinsically ambiguous retinal images. Furthermore, they suggest that CNN models may be a promising starting point for new models of human lightness perception.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) MACO; CIC Approved no  
  Call Number Admin @ si @ PFV2023 Serial 3890  
Permanent link to this record
 

 
Author Marcos V Conde; Florin Vasluianu; Javier Vazquez; Radu Timofte edit   pdf
url  openurl
  Title Perceptual image enhancement for smartphone real-time applications Type Conference Article
  Year 2023 Publication Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision Abbreviated Journal  
  Volume Issue Pages 1848-1858  
  Keywords  
  Abstract Recent advances in camera designs and imaging pipelines allow us to capture high-quality images using smartphones. However, due to the small size and lens limitations of the smartphone cameras, we commonly find artifacts or degradation in the processed images. The most common unpleasant effects are noise artifacts, diffraction artifacts, blur, and HDR overexposure. Deep learning methods for image restoration can successfully remove these artifacts. However, most approaches are not suitable for real-time applications on mobile devices due to their heavy computation and memory requirements. In this paper, we propose LPIENet, a lightweight network for perceptual image enhancement, with the focus on deploying it on smartphones. Our experiments show that, with much fewer parameters and operations, our model can deal with the mentioned artifacts and achieve competitive performance compared with state-of-the-art methods on standard benchmarks. Moreover, to prove the efficiency and reliability of our approach, we deployed the model directly on commercial smartphones and evaluated its performance. Our model can process 2K resolution images under 1 second in mid-level commercial smartphones.  
  Address Waikoloa; Hawai; USA; January 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WACV  
  Notes (up) MACO; CIC Approved no  
  Call Number Admin @ si @ CVV2023 Serial 3900  
Permanent link to this record
 

 
Author Yawei Li; Yulun Zhang; Radu Timofte; Luc Van Gool; Zhijun Tu; Kunpeng Du; Hailing Wang; Hanting Chen; Wei Li; Xiaofei Wang; Jie Hu; Yunhe Wang; Xiangyu Kong; Jinlong Wu; Dafeng Zhang; Jianxing Zhang; Shuai Liu; Furui Bai; Chaoyu Feng; Hao Wang; Yuqian Zhang; Guangqi Shao; Xiaotao Wang; Lei Lei; Rongjian Xu; Zhilu Zhang; Yunjin Chen; Dongwei Ren; Wangmeng Zuo; Qi Wu; Mingyan Han; Shen Cheng; Haipeng Li; Ting Jiang; Chengzhi Jiang; Xinpeng Li; Jinting Luo; Wenjie Lin; Lei Yu; Haoqiang Fan; Shuaicheng Liu; Aditya Arora; Syed Waqas Zamir; Javier Vazquez; Konstantinos G. Derpanis; Michael S. Brown; Hao Li; Zhihao Zhao; Jinshan Pan; Jiangxin Dong; Jinhui Tang; Bo Yang; Jingxiang Chen; Chenghua Li; Xi Zhang; Zhao Zhang; Jiahuan Ren; Zhicheng Ji; Kang Miao; Suiyi Zhao; Huan Zheng; YanYan Wei; Kangliang Liu; Xiangcheng Du; Sijie Liu; Yingbin Zheng; Xingjiao Wu; Cheng Jin; Rajeev Irny; Sriharsha Koundinya; Vighnesh Kamath; Gaurav Khandelwal; Sunder Ali Khowaja; Jiseok Yoon; Ik Hyun Lee; Shijie Chen; Chengqiang Zhao; Huabin Yang; Zhongjian Zhang; Junjia Huang; Yanru Zhang edit  url
doi  openurl
  Title NTIRE 2023 challenge on image denoising: Methods and results Type Conference Article
  Year 2023 Publication Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops Abbreviated Journal  
  Volume Issue Pages 1904-1920  
  Keywords  
  Abstract This paper reviews the NTIRE 2023 challenge on image denoising (σ = 50) with a focus on the proposed solutions and results. The aim is to obtain a network design capable to produce high-quality results with the best performance measured by PSNR for image denoising. Independent additive white Gaussian noise (AWGN) is assumed and the noise level is 50. The challenge had 225 registered participants, and 16 teams made valid submissions. They gauge the state-of-the-art for image denoising.  
  Address Vancouver; Canada; June 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPRW  
  Notes (up) MACO; CIC Approved no  
  Call Number Admin @ si @ LZT2023 Serial 3910  
Permanent link to this record
 

 
Author Chengyi Zou; Shuai Wan; Tiannan Ji; Marc Gorriz Blanch; Marta Mrak; Luis Herranz edit  url
doi  openurl
  Title Chroma Intra Prediction with Lightweight Attention-Based Neural Networks Type Journal Article
  Year 2023 Publication IEEE Transactions on Circuits and Systems for Video Technology Abbreviated Journal TCSVT  
  Volume 34 Issue 1 Pages 549 - 560  
  Keywords  
  Abstract Neural networks can be successfully used for cross-component prediction in video coding. In particular, attention-based architectures are suitable for chroma intra prediction using luma information because of their capability to model relations between difierent channels. However, the complexity of such methods is still very high and should be further reduced, especially for decoding. In this paper, a cost-effective attention-based neural network is designed for chroma intra prediction. Moreover, with the goal of further improving coding performance, a novel approach is introduced to utilize more boundary information effectively. In addition to improving prediction, a simplification methodology is also proposed to reduce inference complexity by simplifying convolutions. The proposed schemes are integrated into H.266/Versatile Video Coding (VVC) pipeline, and only one additional binary block-level syntax flag is introduced to indicate whether a given block makes use of the proposed method. Experimental results demonstrate that the proposed scheme achieves up to −0.46%/−2.29%/−2.17% BD-rate reduction on Y/Cb/Cr components, respectively, compared with H.266/VVC anchor. Reductions in the encoding and decoding complexity of up to 22% and 61%, respectively, are achieved by the proposed scheme with respect to the previous attention-based chroma intra prediction method while maintaining coding performance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) MACO; LAMP Approved no  
  Call Number Admin @ si @ ZWJ2023 Serial 3875  
Permanent link to this record
 

 
Author Mingyi Yang; Luis Herranz; Fei Yang; Luka Murn; Marc Gorriz Blanch; Shuai Wan; Fuzheng Yang; Marta Mrak edit  url
doi  openurl
  Title Semantic Preprocessor for Image Compression for Machines Type Conference Article
  Year 2023 Publication IEEE International Conference on Acoustics, Speech and Signal Processing Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Visual content is being increasingly transmitted and consumed by machines rather than humans to perform automated content analysis tasks. In this paper, we propose an image preprocessor that optimizes the input image for machine consumption prior to encoding by an off-the-shelf codec designed for human consumption. To achieve a better trade-off between the accuracy of the machine analysis task and bitrate, we propose leveraging pre-extracted semantic information to improve the preprocessor’s ability to accurately identify and filter out task-irrelevant information. Furthermore, we propose a two-part loss function to optimize the preprocessor, consisted of a rate-task performance loss and a semantic distillation loss, which helps the reconstructed image obtain more information that contributes to the accuracy of the task. Experiments show that the proposed preprocessor can save up to 48.83% bitrate compared with the method without the preprocessor, and save up to 36.24% bitrate compared to existing preprocessors for machine vision.  
  Address Rodhes Islands; Greece; June 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICASSP  
  Notes (up) MACO; LAMP Approved no  
  Call Number Admin @ si @ YHY2023 Serial 3912  
Permanent link to this record
 

 
Author Roberto Morales; Juan Quispe; Eduardo Aguilar edit  url
doi  openurl
  Title Exploring multi-food detection using deep learning-based algorithms Type Conference Article
  Year 2023 Publication 13th International Conference on Pattern Recognition Systems Abbreviated Journal  
  Volume Issue Pages 1-7  
  Keywords  
  Abstract People are becoming increasingly concerned about their diet, whether for disease prevention, medical treatment or other purposes. In meals served in restaurants, schools or public canteens, it is not easy to identify the ingredients and/or the nutritional information they contain. Currently, technological solutions based on deep learning models have facilitated the recording and tracking of food consumed based on the recognition of the main dish present in an image. Considering that sometimes there may be multiple foods served on the same plate, food analysis should be treated as a multi-class object detection problem. EfficientDet and YOLOv5 are object detection algorithms that have demonstrated high mAP and real-time performance on general domain data. However, these models have not been evaluated and compared on public food datasets. Unlike general domain objects, foods have more challenging features inherent in their nature that increase the complexity of detection. In this work, we performed a performance evaluation of Efficient-Det and YOLOv5 on three public food datasets: UNIMIB2016, UECFood256 and ChileanFood64. From the results obtained, it can be seen that YOLOv5 provides a significant difference in terms of both mAP and response time compared to EfficientDet in all datasets. Furthermore, YOLOv5 outperforms the state-of-the-art on UECFood256, achieving an improvement of more than 4% in terms of mAP@.50 over the best reported.  
  Address Guayaquil; Ecuador; July 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICPRS  
  Notes (up) MILAB Approved no  
  Call Number Admin @ si @ MQA2023 Serial 3843  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: