|   | 
Details
   web
Records
Author Yaxing Wang; Chenshen Wu; Luis Herranz; Joost Van de Weijer; Abel Gonzalez-Garcia; Bogdan Raducanu
Title Transferring GANs: generating images from limited data Type Conference Article
Year 2018 Publication 15th European Conference on Computer Vision Abbreviated Journal
Volume 11210 Issue Pages 220-236
Keywords Generative adversarial networks; Transfer learning; Domain adaptation; Image generation
Abstract ransferring knowledge of pre-trained networks to new domains by means of fine-tuning is a widely used practice for applications based on discriminative models. To the best of our knowledge this practice has not been studied within the context of generative deep networks. Therefore, we study domain adaptation applied to image generation with generative adversarial networks. We evaluate several aspects of domain adaptation, including the impact of target domain size, the relative distance between source and target domain, and the initialization of conditional GANs. Our results show that using knowledge from pre-trained networks can shorten the convergence time and can significantly improve the quality of the generated images, especially when target data is limited. We show that these conclusions can also be drawn for conditional GANs even when the pre-trained model was trained without conditioning. Our results also suggest that density is more important than diversity and a dataset with one or few densely sampled classes is a better source model than more diverse datasets such as ImageNet or Places.
Address Munich; September 2018
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ECCV
Notes (up) LAMP; 600.109; 600.106; 600.120 Approved no
Call Number Admin @ si @ WWH2018a Serial 3130
Permanent link to this record
 

 
Author Yaxing Wang; Joost Van de Weijer; Luis Herranz
Title Mix and match networks: encoder-decoder alignment for zero-pair image translation Type Conference Article
Year 2018 Publication 31st IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal
Volume Issue Pages 5467 - 5476
Keywords
Abstract We address the problem of image translation between domains or modalities for which no direct paired data is available (i.e. zero-pair translation). We propose mix and match networks, based on multiple encoders and decoders aligned in such a way that other encoder-decoder pairs can be composed at test time to perform unseen image translation tasks between domains or modalities for which explicit paired samples were not seen during training. We study the impact of autoencoders, side information and losses in improving the alignment and transferability of trained pairwise translation models to unseen translations. We show our approach is scalable and can perform colorization and style transfer between unseen combinations of domains. We evaluate our system in a challenging cross-modal setting where semantic segmentation is estimated from depth images, without explicit access to any depth-semantic segmentation training pairs. Our model outperforms baselines based on pix2pix and CycleGAN models.
Address Salt Lake City; USA; June 2018
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPR
Notes (up) LAMP; 600.109; 600.106; 600.120 Approved no
Call Number Admin @ si @ WWH2018b Serial 3131
Permanent link to this record
 

 
Author Muhammad Anwer Rao; Fahad Shahbaz Khan; Joost Van de Weijer; Matthieu Molinier; Jorma Laaksonen
Title Binary patterns encoded convolutional neural networks for texture recognition and remote sensing scene classification Type Journal Article
Year 2018 Publication ISPRS Journal of Photogrammetry and Remote Sensing Abbreviated Journal ISPRS J
Volume 138 Issue Pages 74-85
Keywords Remote sensing; Deep learning; Scene classification; Local Binary Patterns; Texture analysis
Abstract Designing discriminative powerful texture features robust to realistic imaging conditions is a challenging computer vision problem with many applications, including material recognition and analysis of satellite or aerial imagery. In the past, most texture description approaches were based on dense orderless statistical distribution of local features. However, most recent approaches to texture recognition and remote sensing scene classification are based on Convolutional Neural Networks (CNNs). The de facto practice when learning these CNN models is to use RGB patches as input with training performed on large amounts of labeled data (ImageNet). In this paper, we show that Local Binary Patterns (LBP) encoded CNN models, codenamed TEX-Nets, trained using mapped coded images with explicit LBP based texture information provide complementary information to the standard RGB deep models. Additionally, two deep architectures, namely early and late fusion, are investigated to combine the texture and color information. To the best of our knowledge, we are the first to investigate Binary Patterns encoded CNNs and different deep network fusion architectures for texture recognition and remote sensing scene classification. We perform comprehensive experiments on four texture recognition datasets and four remote sensing scene classification benchmarks: UC-Merced with 21 scene categories, WHU-RS19 with 19 scene classes, RSSCN7 with 7 categories and the recently introduced large scale aerial image dataset (AID) with 30 aerial scene types. We demonstrate that TEX-Nets provide complementary information to standard RGB deep model of the same network architecture. Our late fusion TEX-Net architecture always improves the overall performance compared to the standard RGB network on both recognition problems. Furthermore, our final combination leads to consistent improvement over the state-of-the-art for remote sensing scene
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) LAMP; 600.109; 600.106; 600.120 Approved no
Call Number Admin @ si @ RKW2018 Serial 3158
Permanent link to this record
 

 
Author Xialei Liu; Joost Van de Weijer; Andrew Bagdanov
Title Leveraging Unlabeled Data for Crowd Counting by Learning to Rank Type Conference Article
Year 2018 Publication 31st IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal
Volume Issue Pages 7661 - 7669
Keywords Task analysis; Training; Computer vision; Visualization; Estimation; Head; Context modeling
Abstract We propose a novel crowd counting approach that leverages abundantly available unlabeled crowd imagery in a learning-to-rank framework. To induce a ranking of
cropped images , we use the observation that any sub-image of a crowded scene image is guaranteed to contain the same number or fewer persons than the super-image. This allows us to address the problem of limited size of existing
datasets for crowd counting. We collect two crowd scene datasets from Google using keyword searches and queryby-example image retrieval, respectively. We demonstrate how to efficiently learn from these unlabeled datasets by incorporating learning-to-rank in a multi-task network which simultaneously ranks images and estimates crowd density maps. Experiments on two of the most challenging crowd counting datasets show that our approach obtains state-ofthe-art results.
Address Salt Lake City; USA; June 2018
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPR
Notes (up) LAMP; 600.109; 600.106; 600.120 Approved no
Call Number Admin @ si @ LWB2018 Serial 3159
Permanent link to this record
 

 
Author Aymen Azaza; Joost Van de Weijer; Ali Douik; Marc Masana
Title Context Proposals for Saliency Detection Type Journal Article
Year 2018 Publication Computer Vision and Image Understanding Abbreviated Journal CVIU
Volume 174 Issue Pages 1-11
Keywords
Abstract One of the fundamental properties of a salient object region is its contrast
with the immediate context. The problem is that numerous object regions
exist which potentially can all be salient. One way to prevent an exhaustive
search over all object regions is by using object proposal algorithms. These
return a limited set of regions which are most likely to contain an object. Several saliency estimation methods have used object proposals. However, they focus on the saliency of the proposal only, and the importance of its immediate context has not been evaluated.
In this paper, we aim to improve salient object detection. Therefore, we extend object proposal methods with context proposals, which allow to incorporate the immediate context in the saliency computation. We propose several saliency features which are computed from the context proposals. In the experiments, we evaluate five object proposal methods for the task of saliency segmentation, and find that Multiscale Combinatorial Grouping outperforms the others. Furthermore, experiments show that the proposed context features improve performance, and that our method matches results on the FT datasets and obtains competitive results on three other datasets (PASCAL-S, MSRA-B and ECSSD).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) LAMP; 600.109; 600.109; 600.120 Approved no
Call Number Admin @ si @ AWD2018 Serial 3241
Permanent link to this record
 

 
Author Marco Buzzelli; Joost Van de Weijer; Raimondo Schettini
Title Learning Illuminant Estimation from Object Recognition Type Conference Article
Year 2018 Publication 25th International Conference on Image Processing Abbreviated Journal
Volume Issue Pages 3234 - 3238
Keywords Illuminant estimation; computational color constancy; semi-supervised learning; deep learning; convolutional neural networks
Abstract In this paper we present a deep learning method to estimate the illuminant of an image. Our model is not trained with illuminant annotations, but with the objective of improving performance on an auxiliary task such as object recognition. To the best of our knowledge, this is the first example of a deep
learning architecture for illuminant estimation that is trained without ground truth illuminants. We evaluate our solution on standard datasets for color constancy, and compare it with state of the art methods. Our proposal is shown to outperform most deep learning methods in a cross-dataset evaluation
setup, and to present competitive results in a comparison with parametric solutions.
Address Athens; Greece; October 2018
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICIP
Notes (up) LAMP; 600.109; 600.120 Approved no
Call Number Admin @ si @ BWS2018 Serial 3157
Permanent link to this record
 

 
Author Abel Gonzalez-Garcia; Davide Modolo; Vittorio Ferrari
Title Objects as context for detecting their semantic parts Type Conference Article
Year 2018 Publication 31st IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal
Volume Issue Pages 6907 - 6916
Keywords Proposals; Semantics; Wheels; Automobiles; Context modeling; Task analysis; Object detection
Abstract We present a semantic part detection approach that effectively leverages object information. We use the object appearance and its class as indicators of what parts to expect. We also model the expected relative location of parts inside the objects based on their appearance. We achieve this with a new network module, called OffsetNet, that efficiently predicts a variable number of part locations within a given object. Our model incorporates all these cues to
detect parts in the context of their objects. This leads to considerably higher performance for the challenging task of part detection compared to using part appearance alone (+5 mAP on the PASCAL-Part dataset). We also compare
to other part detection methods on both PASCAL-Part and CUB200-2011 datasets.
Address Salt Lake City; USA; June 2018
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPR
Notes (up) LAMP; 600.109; 600.120 Approved no
Call Number Admin @ si @ GMF2018 Serial 3229
Permanent link to this record
 

 
Author Vacit Oguz Yazici; Joost Van de Weijer; Arnau Ramisa
Title Color Naming for Multi-Color Fashion Items Type Conference Article
Year 2018 Publication 6th World Conference on Information Systems and Technologies Abbreviated Journal
Volume 747 Issue Pages 64-73
Keywords Deep learning; Color; Multi-label
Abstract There exists a significant amount of research on color naming of single colored objects. However in reality many fashion objects consist of multiple colors. Currently, searching in fashion datasets for multi-colored objects can be a laborious task. Therefore, in this paper we focus on color naming for images with multi-color fashion items. We collect a dataset, which consists of images which may have from one up to four colors. We annotate the images with the 11 basic colors of the English language. We experiment with several designs for deep neural networks with different losses. We show that explicitly estimating the number of colors in the fashion item leads to improved results.
Address Naples; March 2018
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference WORLDCIST
Notes (up) LAMP; 600.109; 601.309; 600.120 Approved no
Call Number Admin @ si @ YWR2018 Serial 3161
Permanent link to this record
 

 
Author Lu Yu; Yongmei Cheng; Joost Van de Weijer
Title Weakly Supervised Domain-Specific Color Naming Based on Attention Type Conference Article
Year 2018 Publication 24th International Conference on Pattern Recognition Abbreviated Journal
Volume Issue Pages 3019 - 3024
Keywords
Abstract The majority of existing color naming methods focuses on the eleven basic color terms of the English language. However, in many applications, different sets of color names are used for the accurate description of objects. Labeling data to learn these domain-specific color names is an expensive and laborious task. Therefore, in this article we aim to learn color names from weakly labeled data. For this purpose, we add an attention branch to the color naming network. The attention branch is used to modulate the pixel-wise color naming predictions of the network. In experiments, we illustrate that the attention branch correctly identifies the relevant regions. Furthermore, we show that our method obtains state-of-the-art results for pixel-wise and image-wise classification on the EBAY dataset and is able to learn color names for various domains.
Address Beijing; August 2018
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICPR
Notes (up) LAMP; 600.109; 602.200; 600.120 Approved no
Call Number Admin @ si @ YCW2018 Serial 3243
Permanent link to this record
 

 
Author Aymen Azaza
Title Context, Motion and Semantic Information for Computational Saliency Type Book Whole
Year 2018 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract The main objective of this thesis is to highlight the salient object in an image or in a video sequence. We address three important—but in our opinion
insufficiently investigated—aspects of saliency detection. Firstly, we start
by extending previous research on saliency which explicitly models the information provided from the context. Then, we show the importance of
explicit context modelling for saliency estimation. Several important works
in saliency are based on the usage of object proposals. However, these methods
focus on the saliency of the object proposal itself and ignore the context.
To introduce context in such saliency approaches, we couple every object
proposal with its direct context. This allows us to evaluate the importance
of the immediate surround (context) for its saliency. We propose several
saliency features which are computed from the context proposals including
features based on omni-directional and horizontal context continuity. Secondly,
we investigate the usage of top-downmethods (high-level semantic
information) for the task of saliency prediction since most computational
methods are bottom-up or only include few semantic classes. We propose
to consider a wider group of object classes. These objects represent important
semantic information which we will exploit in our saliency prediction
approach. Thirdly, we develop a method to detect video saliency by computing
saliency from supervoxels and optical flow. In addition, we apply the
context features developed in this thesis for video saliency detection. The
method combines shape and motion features with our proposed context
features. To summarize, we prove that extending object proposals with their
direct context improves the task of saliency detection in both image and
video data. Also the importance of the semantic information in saliency
estimation is evaluated. Finally, we propose a newmotion feature to detect
saliency in video data. The three proposed novelties are evaluated on standard
saliency benchmark datasets and are shown to improve with respect to
state-of-the-art.
Address October 2018
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor Joost Van de Weijer;Ali Douik
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-945373-9-4 Medium
Area Expedition Conference
Notes (up) LAMP; 600.120 Approved no
Call Number Admin @ si @ Aza2018 Serial 3218
Permanent link to this record
 

 
Author Adrian Galdran; Aitor Alvarez-Gila; Alessandro Bria; Javier Vazquez; Marcelo Bertalmio
Title On the Duality Between Retinex and Image Dehazing Type Conference Article
Year 2018 Publication 31st IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal
Volume Issue Pages 8212–8221
Keywords Image color analysis; Task analysis; Atmospheric modeling; Computer vision; Computational modeling; Lighting
Abstract Image dehazing deals with the removal of undesired loss of visibility in outdoor images due to the presence of fog. Retinex is a color vision model mimicking the ability of the Human Visual System to robustly discount varying illuminations when observing a scene under different spectral lighting conditions. Retinex has been widely explored in the computer vision literature for image enhancement and other related tasks. While these two problems are apparently unrelated, the goal of this work is to show that they can be connected by a simple linear relationship. Specifically, most Retinex-based algorithms have the characteristic feature of always increasing image brightness, which turns them into ideal candidates for effective image dehazing by directly applying Retinex to a hazy image whose intensities have been inverted. In this paper, we give theoretical proof that Retinex on inverted intensities is a solution to the image dehazing problem. Comprehensive qualitative and quantitative results indicate that several classical and modern implementations of Retinex can be transformed into competing image dehazing algorithms performing on pair with more complex fog removal methods, and can overcome some of the main challenges associated with this problem.
Address Salt Lake City; USA; June 2018
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPR
Notes (up) LAMP; 600.120 Approved no
Call Number Admin @ si @ GAB2018 Serial 3146
Permanent link to this record
 

 
Author Abel Gonzalez-Garcia; Joost Van de Weijer; Yoshua Bengio
Title Image-to-image translation for cross-domain disentanglement Type Conference Article
Year 2018 Publication 32nd Annual Conference on Neural Information Processing Systems Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address Montreal; Canada; December 2018
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference NIPS
Notes (up) LAMP; 600.120 Approved no
Call Number Admin @ si @ GWB2018 Serial 3155
Permanent link to this record
 

 
Author Hugo Prol; Vincent Dumoulin; Luis Herranz
Title Cross-Modulation Networks for Few-Shot Learning Type Miscellaneous
Year 2018 Publication Arxiv Abbreviated Journal
Volume Issue Pages
Keywords
Abstract A family of recent successful approaches to few-shot learning relies on learning an embedding space in which predictions are made by computing similarities between examples. This corresponds to combining information between support and query examples at a very late stage of the prediction pipeline. Inspired by this observation, we hypothesize that there may be benefits to combining the information at various levels of abstraction along the pipeline. We present an architecture called Cross-Modulation Networks which allows support and query examples to interact throughout the feature extraction process via a feature-wise modulation mechanism. We adapt the Matching Networks architecture to take advantage of these interactions and show encouraging initial results on miniImageNet in the 5-way, 1-shot setting, where we close the gap with state-of-the-art.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) LAMP; 600.120 Approved no
Call Number Admin @ si @ PDH2018 Serial 3248
Permanent link to this record
 

 
Author Luis Herranz; Weiqing Min; Shuqiang Jiang
Title Food recognition and recipe analysis: integrating visual content, context and external knowledge Type Miscellaneous
Year 2018 Publication Arxiv Abbreviated Journal
Volume Issue Pages
Keywords
Abstract The central role of food in our individual and social life, combined with recent technological advances, has motivated a growing interest in applications that help to better monitor dietary habits as well as the exploration and retrieval of food-related information. We review how visual content, context and external knowledge can be integrated effectively into food-oriented applications, with special focus on recipe analysis and retrieval, food recommendation and restaurant context as emerging directions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) LAMP; 600.120 Approved no
Call Number Admin @ si @ HMJ2018 Serial 3250
Permanent link to this record
 

 
Author Marc Masana; Idoia Ruiz; Joan Serrat; Joost Van de Weijer; Antonio Lopez
Title Metric Learning for Novelty and Anomaly Detection Type Conference Article
Year 2018 Publication 29th British Machine Vision Conference Abbreviated Journal
Volume Issue Pages
Keywords
Abstract When neural networks process images which do not resemble the distribution seen during training, so called out-of-distribution images, they often make wrong predictions, and do so too confidently. The capability to detect out-of-distribution images is therefore crucial for many real-world applications. We divide out-of-distribution detection between novelty detection ---images of classes which are not in the training set but are related to those---, and anomaly detection ---images with classes which are unrelated to the training set. By related we mean they contain the same type of objects, like digits in MNIST and SVHN. Most existing work has focused on anomaly detection, and has addressed this problem considering networks trained with the cross-entropy loss. Differently from them, we propose to use metric learning which does not have the drawback of the softmax layer (inherent to cross-entropy methods), which forces the network to divide its prediction power over the learned classes. We perform extensive experiments and evaluate both novelty and anomaly detection, even in a relevant application such as traffic sign recognition, obtaining comparable or better results than previous works.
Address Newcastle; uk; September 2018
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference BMVC
Notes (up) LAMP; ADAS; 601.305; 600.124; 600.106; 602.200; 600.120; 600.118 Approved no
Call Number Admin @ si @ MRS2018 Serial 3156
Permanent link to this record