|   | 
Details
   web
Records
Author Ilke Demir; Dena Bazazian; Adriana Romero; Viktoriia Sharmanska; Lyne P. Tchapmi
Title WiCV 2018: The Fourth Women In Computer Vision Workshop Type Conference Article
Year 2018 Publication 4th Women in Computer Vision Workshop Abbreviated Journal
Volume Issue Pages 1941-19412
Keywords (down) Conferences; Computer vision; Industries; Object recognition; Engineering profession; Collaboration; Machine learning
Abstract We present WiCV 2018 – Women in Computer Vision Workshop to increase the visibility and inclusion of women researchers in computer vision field, organized in conjunction with CVPR 2018. Computer vision and machine learning have made incredible progress over the past years, yet the number of female researchers is still low both in academia and industry. WiCV is organized to raise visibility of female researchers, to increase the collaboration,
and to provide mentorship and give opportunities to femaleidentifying junior researchers in the field. In its fourth year, we are proud to present the changes and improvements over the past years, summary of statistics for presenters and attendees, followed by expectations from future generations.
Address Salt Lake City; USA; June 2018
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference WiCV
Notes DAG; 600.121; 600.129 Approved no
Call Number Admin @ si @ DBR2018 Serial 3222
Permanent link to this record
 

 
Author Mariella Dimiccoli
Title Fundamentals of cone regression Type Journal
Year 2016 Publication Journal of Statistics Surveys Abbreviated Journal
Volume 10 Issue Pages 53-99
Keywords (down) cone regression; linear complementarity problems; proximal operators.
Abstract Cone regression is a particular case of quadratic programming that minimizes a weighted sum of squared residuals under a set of linear inequality constraints. Several important statistical problems such as isotonic, concave regression or ANOVA under partial orderings, just to name a few, can be considered as particular instances of the cone regression problem. Given its relevance in Statistics, this paper aims to address the fundamentals of cone regression from a theoretical and practical point of view. Several formulations of the cone regression problem are considered and, focusing on the particular case of concave regression as an example, several algorithms are analyzed and compared both qualitatively and quantitatively through numerical simulations. Several improvements to enhance numerical stability and bound the computational cost are proposed. For each analyzed algorithm, the pseudo-code and its corresponding code in Matlab are provided. The results from this study demonstrate that the choice of the optimization approach strongly impacts the numerical performances. It is also shown that methods are not currently available to solve efficiently cone regression problems with large dimension (more than many thousands of points). We suggest further research to fill this gap by exploiting and adapting classical multi-scale strategy to compute an approximate solution.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1935-7516 ISBN Medium
Area Expedition Conference
Notes MILAB; Approved no
Call Number Admin @ si @Dim2016a Serial 2783
Permanent link to this record
 

 
Author Carola Figueroa Flores
Title Visual Saliency for Object Recognition, and Object Recognition for Visual Saliency Type Book Whole
Year 2021 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords (down) computer vision; visual saliency; fine-grained object recognition; convolutional neural networks; images classification
Abstract For humans, the recognition of objects is an almost instantaneous, precise and
extremely adaptable process. Furthermore, we have the innate capability to learn
new object classes from only few examples. The human brain lowers the complexity
of the incoming data by filtering out part of the information and only processing
those things that capture our attention. This, mixed with our biological predisposition to respond to certain shapes or colors, allows us to recognize in a simple
glance the most important or salient regions from an image. This mechanism can
be observed by analyzing on which parts of images subjects place attention; where
they fix their eyes when an image is shown to them. The most accurate way to
record this behavior is to track eye movements while displaying images.
Computational saliency estimation aims to identify to what extent regions or
objects stand out with respect to their surroundings to human observers. Saliency
maps can be used in a wide range of applications including object detection, image
and video compression, and visual tracking. The majority of research in the field has
focused on automatically estimating saliency maps given an input image. Instead, in
this thesis, we set out to incorporate saliency maps in an object recognition pipeline:
we want to investigate whether saliency maps can improve object recognition
results.
In this thesis, we identify several problems related to visual saliency estimation.
First, to what extent the estimation of saliency can be exploited to improve the
training of an object recognition model when scarce training data is available. To
solve this problem, we design an image classification network that incorporates
saliency information as input. This network processes the saliency map through a
dedicated network branch and uses the resulting characteristics to modulate the
standard bottom-up visual characteristics of the original image input. We will refer to this technique as saliency-modulated image classification (SMIC). In extensive
experiments on standard benchmark datasets for fine-grained object recognition,
we show that our proposed architecture can significantly improve performance,
especially on dataset with scarce training data.
Next, we address the main drawback of the above pipeline: SMIC requires an
explicit saliency algorithm that must be trained on a saliency dataset. To solve this,
we implement a hallucination mechanism that allows us to incorporate the saliency
estimation branch in an end-to-end trained neural network architecture that only
needs the RGB image as an input. A side-effect of this architecture is the estimation
of saliency maps. In experiments, we show that this architecture can obtain similar
results on object recognition as SMIC but without the requirement of ground truth
saliency maps to train the system.
Finally, we evaluated the accuracy of the saliency maps that occur as a sideeffect of object recognition. For this purpose, we use a set of benchmark datasets
for saliency evaluation based on eye-tracking experiments. Surprisingly, the estimated saliency maps are very similar to the maps that are computed from human
eye-tracking experiments. Our results show that these saliency maps can obtain
competitive results on benchmark saliency maps. On one synthetic saliency dataset
this method even obtains the state-of-the-art without the need of ever having seen
an actual saliency image for training.
Address March 2021
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor Joost Van de Weijer;Bogdan Raducanu
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-122714-4-7 Medium
Area Expedition Conference
Notes LAMP; 600.120 Approved no
Call Number Admin @ si @ Fig2021 Serial 3600
Permanent link to this record
 

 
Author Svebor Karaman; Andrew Bagdanov; Lea Landucci; Gianpaolo D'Amico; Andrea Ferracani; Daniele Pezzatini; Alberto del Bimbo
Title Personalized multimedia content delivery on an interactive table by passive observation of museum visitors Type Journal Article
Year 2016 Publication Multimedia Tools and Applications Abbreviated Journal MTAP
Volume 75 Issue 7 Pages 3787-3811
Keywords (down) Computer vision; Video surveillance; Cultural heritage; Multimedia museum; Personalization; Natural interaction; Passive profiling
Abstract The amount of multimedia data collected in museum databases is growing fast, while the capacity of museums to display information to visitors is acutely limited by physical space. Museums must seek the perfect balance of information given on individual pieces in order to provide sufficient information to aid visitor understanding while maintaining sparse usage of the walls and guaranteeing high appreciation of the exhibit. Moreover, museums often target the interests of average visitors instead of the entire spectrum of different interests each individual visitor might have. Finally, visiting a museum should not be an experience contained in the physical space of the museum but a door opened onto a broader context of related artworks, authors, artistic trends, etc. In this paper we describe the MNEMOSYNE system that attempts to address these issues through a new multimedia museum experience. Based on passive observation, the system builds a profile of the artworks of interest for each visitor. These profiles of interest are then used to drive an interactive table that personalizes multimedia content delivery. The natural user interface on the interactive table uses the visitor’s profile, an ontology of museum content and a recommendation system to personalize exploration of multimedia content. At the end of their visit, the visitor can take home a personalized summary of their visit on a custom mobile application. In this article we describe in detail each component of our approach as well as the first field trials of our prototype system built and deployed at our permanent exhibition space at LeMurate (http://www.lemurate.comune.fi.it/lemurate/) in Florence together with the first results of the evaluation process during the official installation in the National Museum of Bargello (http://www.uffizi.firenze.it/musei/?m=bargello).
Address
Corporate Author Thesis
Publisher Springer US Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1380-7501 ISBN Medium
Area Expedition Conference
Notes LAMP; 601.240; 600.079 Approved no
Call Number Admin @ si @ KBL2016 Serial 2520
Permanent link to this record
 

 
Author Jose A. Garcia; David Masip; Valerio Sbragaglia; Jacopo Aguzzi
Title Automated Identification and Tracking of Nephrops norvegicus (L.) Using Infrared and Monochromatic Blue Light Type Conference Article
Year 2016 Publication 19th International Conference of the Catalan Association for Artificial Intelligence Abbreviated Journal
Volume Issue Pages
Keywords (down) computer vision; video analysis; object recognition; tracking; behaviour; social; decapod; Nephrops norvegicus
Abstract Automated video and image analysis can be a very efficient tool to analyze
animal behavior based on sociality, especially in hard access environments
for researchers. The understanding of this social behavior can play a key role in the sustainable design of capture policies of many species. This paper proposes the use of computer vision algorithms to identify and track a specific specie, the Norway lobster, Nephrops norvegicus, a burrowing decapod with relevant commercial value which is captured by trawling. These animals can only be captured when are engaged in seabed excursions, which are strongly related with their social behavior.
This emergent behavior is modulated by the day-night cycle, but their social
interactions remain unknown to the scientific community. The paper introduces an identification scheme made of four distinguishable black and white tags (geometric shapes). The project has recorded 15-day experiments in laboratory pools, under monochromatic blue light (472 nm.) and darkness conditions (recorded using Infra Red light). Using this massive image set, we propose a comparative of state-ofthe-art computer vision algorithms to distinguish and track the different animals’ movements. We evaluate the robustness to the high noise presence in the infrared video signals and free out-of-plane rotations due to animal movement. The experiments show promising accuracies under a cross-validation protocol, being adaptable to the automation and analysis of large scale data. In a second contribution, we created an extensive dataset of shapes (46027 different shapes) from four daily experimental video recordings, which will be available to the community.
Address Barcelona; Spain; October 2016
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CCIA
Notes OR;MV; Approved no
Call Number Admin @ si @ GMS2016 Serial 2816
Permanent link to this record
 

 
Author Aitor Alvarez-Gila
Title Self-supervised learning for image-to-image translation in the small data regime Type Book Whole
Year 2022 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords (down) Computer vision; Neural networks; Self-supervised learning; Image-to-image mapping; Probabilistic programming
Abstract The mass irruption of Deep Convolutional Neural Networks (CNNs) in computer vision since 2012 led to a dominance of the image understanding paradigm consisting in an end-to-end fully supervised learning workflow over large-scale annotated datasets. This approach proved to be extremely useful at solving a myriad of classic and new computer vision tasks with unprecedented performance —often, surpassing that of humans—, at the expense of vast amounts of human-labeled data, extensive computational resources and the disposal of all of our prior knowledge on the task at hand. Even though simple transfer learning methods, such as fine-tuning, have achieved remarkable impact, their success when the amount of labeled data in the target domain is small is limited. Furthermore, the non-static nature of data generation sources will often derive in data distribution shifts that degrade the performance of deployed models. As a consequence, there is a growing demand for methods that can exploit elements of prior knowledge and sources of information other than the manually generated ground truth annotations of the images during the network training process, so that they can adapt to new domains that constitute, if not a small data regime, at least a small labeled data regime. This thesis targets such few or no labeled data scenario in three distinct image-to-image mapping learning problems. It contributes with various approaches that leverage our previous knowledge of different elements of the image formation process: We first present a data-efficient framework for both defocus and motion blur detection, based on a model able to produce realistic synthetic local degradations. The framework comprises a self-supervised, a weakly-supervised and a semi-supervised instantiation, depending on the absence or availability and the nature of human annotations, and outperforms fully-supervised counterparts in a variety of settings. Our knowledge on color image formation is then used to gather input and target ground truth image pairs for the RGB to hyperspectral image reconstruction task. We make use of a CNN to tackle this problem, which, for the first time, allows us to exploit spatial context and achieve state-of-the-art results given a limited hyperspectral image set. In our last contribution to the subfield of data-efficient image-to-image transformation problems, we present the novel semi-supervised task of zero-pair cross-view semantic segmentation: we consider the case of relocation of the camera in an end-to-end trained and deployed monocular, fixed-view semantic segmentation system often found in industry. Under the assumption that we are allowed to obtain an additional set of synchronized but unlabeled image pairs of new scenes from both original and new camera poses, we present ZPCVNet, a model and training procedure that enables the production of dense semantic predictions in either source or target views at inference time. The lack of existing suitable public datasets to develop this approach led us to the creation of MVMO, a large-scale Multi-View, Multi-Object path-traced dataset with per-view semantic segmentation annotations. We expect MVMO to propel future research in the exciting under-developed fields of cross-view and multi-view semantic segmentation. Last, in a piece of applied research of direct application in the context of process monitoring of an Electric Arc Furnace (EAF) in a steelmaking plant, we also consider the problem of simultaneously estimating the temperature and spectral emissivity of distant hot emissive samples. To that end, we design our own capturing device, which integrates three point spectrometers covering a wide range of the Ultra-Violet, visible, and Infra-Red spectra and is capable of registering the radiance signal incoming from an 8cm diameter spot located up to 20m away. We then define a physically accurate radiative transfer model that comprises the effects of atmospheric absorbance, of the optical system transfer function, and of the sample temperature and spectral emissivity themselves. We solve this inverse problem without the need for annotated data using a probabilistic programming-based Bayesian approach, which yields full posterior distribution estimates of the involved variables that are consistent with laboratory-grade measurements.
Address Julu, 2019
Corporate Author Thesis Ph.D. thesis
Publisher Place of Publication Editor Joost Van de Weijer; Estibaliz Garrote
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes LAMP Approved no
Call Number Admin @ si @ Alv2022 Serial 3716
Permanent link to this record
 

 
Author Ciprian Corneanu; Meysam Madadi; Sergio Escalera
Title Deep Structure Inference Network for Facial Action Unit Recognition Type Conference Article
Year 2018 Publication 15th European Conference on Computer Vision Abbreviated Journal
Volume 11216 Issue Pages 309-324
Keywords (down) Computer Vision; Machine Learning; Deep Learning; Facial Expression Analysis; Facial Action Units; Structure Inference
Abstract Facial expressions are combinations of basic components called Action Units (AU). Recognizing AUs is key for general facial expression analysis. Recently, efforts in automatic AU recognition have been dedicated to learning combinations of local features and to exploiting correlations between AUs. We propose a deep neural architecture that tackles both problems by combining learned local and global features in its initial stages and replicating a message passing algorithm between classes similar to a graphical model inference approach in later stages. We show that by training the model end-to-end with increased supervision we improve state-of-the-art by 5.3% and 8.2% performance on BP4D and DISFA datasets, respectively.
Address Munich; September 2018
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ECCV
Notes HUPBA; no proj Approved no
Call Number Admin @ si @ CME2018 Serial 3205
Permanent link to this record
 

 
Author Jose M. Armingol; Jorge Alfonso; Nourdine Aliane; Miguel Clavijo; Sergio Campos-Cordobes; Arturo de la Escalera; Javier del Ser; Javier Fernandez; Fernando Garcia; Felipe Jimenez; Antonio Lopez; Mario Mata
Title Environmental Perception for Intelligent Vehicles Type Book Chapter
Year 2018 Publication Intelligent Vehicles. Enabling Technologies and Future Developments Abbreviated Journal
Volume Issue Pages 23–101
Keywords (down) Computer vision; laser techniques; data fusion; advanced driver assistance systems; traffic monitoring systems; intelligent vehicles
Abstract Environmental perception represents, because of its complexity, a challenge for Intelligent Transport Systems due to the great variety of situations and different elements that can happen in road environments and that must be faced by these systems. In connection with this, so far there are a variety of solutions as regards sensors and methods, so the results of precision, complexity, cost, or computational load obtained by these works are different. In this chapter some systems based on computer vision and laser techniques are presented. Fusion methods are also introduced in order to provide advanced and reliable perception systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ADAS; 600.118 Approved no
Call Number Admin @ si @AAA2018 Serial 3046
Permanent link to this record
 

 
Author David Geronimo; Antonio Lopez
Title Vision-based Pedestrian Protection Systems for Intelligent Vehicles Type Book Whole
Year 2014 Publication SpringerBriefs in Computer Science Abbreviated Journal
Volume Issue Pages 1-114
Keywords (down) Computer Vision; Driver Assistance Systems; Intelligent Vehicles; Pedestrian Detection; Vulnerable Road Users
Abstract Pedestrian Protection Systems (PPSs) are on-board systems aimed at detecting and tracking people in the surroundings of a vehicle in order to avoid potentially dangerous situations. These systems, together with other Advanced Driver Assistance Systems (ADAS) such as lane departure warning or adaptive cruise control, are one of the most promising ways to improve traffic safety. By the use of computer vision, cameras working either in the visible or infra-red spectra have been demonstrated as a reliable sensor to perform this task. Nevertheless, the variability of human’s appearance, not only in terms of clothing and sizes but also as a result of their dynamic shape, makes pedestrians one of the most complex classes even for computer vision. Moreover, the unstructured changing and unpredictable environment in which such on-board systems must work makes detection a difficult task to be carried out with the demanded robustness. In this brief, the state of the art in PPSs is introduced through the review of the most relevant papers of the last decade. A common computational architecture is presented as a framework to organize each method according to its main contribution. More than 300 papers are referenced, most of them addressing pedestrian detection and others corresponding to the descriptors (features), pedestrian models, and learning machines used. In addition, an overview of topics such as real-time aspects, systems benchmarking and future challenges of this research area are presented.
Address
Corporate Author Thesis
Publisher Springer Briefs in Computer Vision Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-1-4614-7986-4 Medium
Area Expedition Conference
Notes ADAS; 600.076 Approved no
Call Number GeL2014 Serial 2325
Permanent link to this record
 

 
Author Victoria Ruiz; Angel Sanchez; Jose F. Velez; Bogdan Raducanu
Title Automatic Image-Based Waste Classification Type Conference Article
Year 2019 Publication International Work-Conference on the Interplay Between Natural and Artificial Computation. From Bioinspired Systems and Biomedical Applications to Machine Learning Abbreviated Journal
Volume 11487 Issue Pages 422–431
Keywords (down) Computer Vision; Deep learning; Convolutional neural networks; Waste classification
Abstract The management of solid waste in large urban environments has become a complex problem due to increasing amount of waste generated every day by citizens and companies. Current Computer Vision and Deep Learning techniques can help in the automatic detection and classification of waste types for further recycling tasks. In this work, we use the TrashNet dataset to train and compare different deep learning architectures for automatic classification of garbage types. In particular, several Convolutional Neural Networks (CNN) architectures were compared: VGG, Inception and ResNet. The best classification results were obtained using a combined Inception-ResNet model that achieved 88.6% of accuracy. These are the best results obtained with the considered dataset.
Address Almeria; June 2019
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference IWINAC
Notes LAMP; 600.120 Approved no
Call Number RSV2019 Serial 3273
Permanent link to this record
 

 
Author Meysam Madadi; Sergio Escalera; Xavier Baro; Jordi Gonzalez
Title End-to-end Global to Local CNN Learning for Hand Pose Recovery in Depth data Type Journal Article
Year 2022 Publication IET Computer Vision Abbreviated Journal IETCV
Volume 16 Issue 1 Pages 50-66
Keywords (down) Computer vision; data acquisition; human computer interaction; learning (artificial intelligence); pose estimation
Abstract Despite recent advances in 3D pose estimation of human hands, especially thanks to the advent of CNNs and depth cameras, this task is still far from being solved. This is mainly due to the highly non-linear dynamics of fingers, which make hand model training a challenging task. In this paper, we exploit a novel hierarchical tree-like structured CNN, in which branches are trained to become specialized in predefined subsets of hand joints, called local poses. We further fuse local pose features, extracted from hierarchical CNN branches, to learn higher order dependencies among joints in the final pose by end-to-end training. Lastly, the loss function used is also defined to incorporate appearance and physical constraints about doable hand motion and deformation. Finally, we introduce a non-rigid data augmentation approach to increase the amount of training depth data. Experimental results suggest that feeding a tree-shaped CNN, specialized in local poses, into a fusion network for modeling joints correlations and dependencies, helps to increase the precision of final estimations, outperforming state-of-the-art results on NYU and SyntheticHand datasets.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HUPBA; ISE; 600.098; 600.119 Approved no
Call Number Admin @ si @ MEB2022 Serial 3652
Permanent link to this record
 

 
Author Alex Gomez-Villa; Bartlomiej Twardowski; Lu Yu; Andrew Bagdanov; Joost Van de Weijer
Title Continually Learning Self-Supervised Representations With Projected Functional Regularization Type Conference Article
Year 2022 Publication CVPR 2022 Workshop on Continual Learning (CLVision, 3rd Edition) Abbreviated Journal
Volume Issue Pages 3866-3876
Keywords (down) Computer vision; Conferences; Self-supervised learning; Image representation; Pattern recognition
Abstract Recent self-supervised learning methods are able to learn high-quality image representations and are closing the gap with supervised approaches. However, these methods are unable to acquire new knowledge incrementally – they are, in fact, mostly used only as a pre-training phase over IID data. In this work we investigate self-supervised methods in continual learning regimes without any replay
mechanism. We show that naive functional regularization,also known as feature distillation, leads to lower plasticity and limits continual learning performance. Instead, we propose Projected Functional Regularization in which a separate temporal projection network ensures that the newly learned feature space preserves information of the previous one, while at the same time allowing for the learning of new features. This prevents forgetting while maintaining the plasticity of the learner. Comparison with other incremental learning approaches applied to self-supervision demonstrates that our method obtains competitive performance in
different scenarios and on multiple datasets.
Address New Orleans, USA; 20 June 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPRW
Notes LAMP: 600.147; 600.120 Approved no
Call Number Admin @ si @ GTY2022 Serial 3704
Permanent link to this record
 

 
Author Zhengying Liu; Zhen Xu; Sergio Escalera; Isabelle Guyon; Julio C. S. Jacques Junior; Meysam Madadi; Adrien Pavao; Sebastien Treguer; Wei-Wei Tu
Title Towards automated computer vision: analysis of the AutoCV challenges 2019 Type Journal Article
Year 2020 Publication Pattern Recognition Letters Abbreviated Journal PRL
Volume 135 Issue Pages 196-203
Keywords (down) Computer vision; AutoML; Deep learning
Abstract We present the results of recent challenges in Automated Computer Vision (AutoCV, renamed here for clarity AutoCV1 and AutoCV2, 2019), which are part of a series of challenge on Automated Deep Learning (AutoDL). These two competitions aim at searching for fully automated solutions for classification tasks in computer vision, with an emphasis on any-time performance. The first competition was limited to image classification while the second one included both images and videos. Our design imposed to the participants to submit their code on a challenge platform for blind testing on five datasets, both for training and testing, without any human intervention whatsoever. Winning solutions adopted deep learning techniques based on already published architectures, such as AutoAugment, MobileNet and ResNet, to reach state-of-the-art performance in the time budget of the challenge (only 20 minutes of GPU time). The novel contributions include strategies to deliver good preliminary results at any time during the learning process, such that a method can be stopped early and still deliver good performance. This feature is key for the adoption of such techniques by data analysts desiring to obtain rapidly preliminary results on large datasets and to speed up the development process. The soundness of our design was verified in several aspects: (1) Little overfitting of the on-line leaderboard providing feedback on 5 development datasets was observed, compared to the final blind testing on the 5 (separate) final test datasets, suggesting that winning solutions might generalize to other computer vision classification tasks; (2) Error bars on the winners’ performance allow us to say with confident that they performed significantly better than the baseline solutions we provided; (3) The ranking of participants according to the any-time metric we designed, namely the Area under the Learning Curve, was different from that of the fixed-time metric, i.e. AUC at the end of the fixed time budget. We released all winning solutions under open-source licenses. At the end of the AutoDL challenge series, all data of the challenge will be made publicly available, thus providing a collection of uniformly formatted datasets, which can serve to conduct further research, particularly on meta-learning.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HuPBA; no proj Approved no
Call Number Admin @ si @ LXE2020 Serial 3427
Permanent link to this record
 

 
Author Onur Ferhat
Title Eye-Tracking with Webcam-Based Setups: Implementation of a Real-Time System and an Analysis of Factors Affecting Performance Type Report
Year 2012 Publication CVC Technical Report Abbreviated Journal
Volume 172 Issue Pages
Keywords (down) Computer vision, eye-tracking, gaussian process, feature selection, optical flow
Abstract In the recent years commercial eye-tracking hardware has become more common, with the introduction of new models from several brands that have better performance and easier setup procedures. A cause and at the same time a result of this phenomenon is the popularity of eye-tracking research directed at marketing, accessibility and usability, among others.
One problem with these hardware components is scalability, because both the price and the necessary expertise to operate them makes it practically impossible in the large scale. In this work, we analyze the feasibility of a software eye-tracking system based on a single, ordinary webcam. Our aim is to discover the limits of such a system and to see whether it provides acceptable performances.
The significance of this setup is that it is the most common setup found in consumer environments, off-the-shelf electronic devices such as laptops, mobile phones and tablet computers. As no special equipment such as infrared lights, mirrors or zoom lenses are used; setting up and calibrating the system is easier compared to other approaches using these components.
Our work is based on the open source application Opengazer, which provides a good starting point for our contributions. We propose several improvements in order to push the system's performance further and make it feasible as a robust, real-time device. Then we carry out an elaborate experiment involving 18 human subjects and 4 different system setups. Finally, we give an analysis of the results and discuss the effects of setup changes, subject differences and modifications in the software.
Address Bellaterra
Corporate Author Computer Vision Center Thesis Master's thesis
Publisher Place of Publication Editor Fernando Vilariño
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MV Approved no
Call Number Admin @ si @ Fer2012; IAM @ iam @ Fer2012 Serial 2165
Permanent link to this record
 

 
Author Adriana Romero; Nicolas Ballas; Samira Ebrahimi Kahou; Antoine Chassang; Carlo Gatta; Yoshua Bengio
Title FitNets: Hints for Thin Deep Nets Type Conference Article
Year 2015 Publication 3rd International Conference on Learning Representations ICLR2015 Abbreviated Journal
Volume Issue Pages
Keywords (down) Computer Science ; Learning; Computer Science ;Neural and Evolutionary Computing
Abstract While depth tends to improve network performances, it also makes gradient-based training more difficult since deeper networks tend to be more non-linear. The recently proposed knowledge distillation approach is aimed at obtaining small and fast-to-execute models, and it has shown that a student network could imitate the soft output of a larger teacher network or ensemble of networks. In this paper, we extend this idea to allow the training of a student that is deeper and thinner than the teacher, using not only the outputs but also the intermediate representations learned by the teacher as hints to improve the training process and final performance of the student. Because the student intermediate hidden layer will generally be smaller than the teacher's intermediate hidden layer, additional parameters are introduced to map the student hidden layer to the prediction of the teacher hidden layer. This allows one to train deeper students that can generalize better or run faster, a trade-off that is controlled by the chosen student capacity. For example, on CIFAR-10, a deep student network with almost 10.4 times less parameters outperforms a larger, state-of-the-art teacher network.
Address San Diego; CA; May 2015
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICLR
Notes MILAB Approved no
Call Number Admin @ si @ RBK2015 Serial 2593
Permanent link to this record