|
Javier Vazquez, C. Alejandro Parraga, & Maria Vanrell. (2009). Ordinal pairwise method for natural images comparison. PER - Perception, 38, 180.
Abstract: 38(Suppl.)ECVP Abstract Supplement
We developed a new psychophysical method to compare different colour appearance models when applied to natural scenes. The method was as follows: two images (processed by different algorithms) were displayed on a CRT monitor and observers were asked to select the most natural of them. The original images were gathered by means of a calibrated trichromatic digital camera and presented one on top of the other on a calibrated screen. The selection was made by pressing on a 6-button IR box, which allowed observers to consider not only the most natural but to rate their selection. The rating system allowed observers to register how much more natural was their chosen image (eg, much more, definitely more, slightly more), which gave us valuable extra information on the selection process. The results were analysed considering both the selection as a binary choice (using Thurstone's law of comparative judgement) and using Bradley-Terry method for ordinal comparison. Our results show a significant difference in the rating scales obtained. Although this method has been used in colour constancy algorithm comparisons, its uses are much wider, eg to compare algorithms of image compression, rendering, recolouring, etc.
|
|
|
Robert Benavente, C. Alejandro Parraga, & Maria Vanrell. (2009). Colour categories boundaries are better defined in contextual conditions. PER - Perception, 38, 36.
Abstract: In a previous experiment [Parraga et al, 2009 Journal of Imaging Science and Technology 53(3)] the boundaries between basic colour categories were measured by asking subjects to categorize colour samples presented in isolation (ie on a dark background) using a YES/NO paradigm. Results showed that some boundaries (eg green – blue) were very diffuse and the subjects' answers presented bimodal distributions, which were attributed to the emergence of non-basic categories in those regions (eg turquoise). To confirm these results we performed a new experiment focussed on the boundaries where bimodal distributions were more evident. In this new experiment rectangular colour samples were presented surrounded by random colour patches to simulate contextual conditions on a calibrated CRT monitor. The names of two neighbouring colours were shown at the bottom of the screen and subjects selected the boundary between these colours by controlling the chromaticity of the central patch, sliding it across these categories' frontier. Results show that in this new experimental paradigm, the formerly uncertain inter-colour category boundaries are better defined and the dispersions (ie the bimodal distributions) that occurred in the previous experiment disappear. These results may provide further support to Berlin and Kay's basic colour terms theory.
|
|
|
C. Alejandro Parraga, Javier Vazquez, & Maria Vanrell. (2009). A new cone activation-based natural images dataset. PER - Perception, 36, 180.
Abstract: We generated a new dataset of digital natural images where each colour plane corresponds to the human LMS (long-, medium-, short-wavelength) cone activations. The images were chosen to represent five different visual environments (eg forest, seaside, mountain snow, urban, motorways) and were taken under natural illumination at different times of day. At the bottom-left corner of each picture there was a matte grey ball of approximately constant spectral reflectance (across the camera's response spectrum,) and nearly Lambertian reflective properties, which allows to compute (and remove, if necessary) the illuminant's colour and intensity. The camera (Sigma Foveon SD10) was calibrated by measuring its sensor's spectral responses using a set of 31 spectrally narrowband interference filters. This allowed conversion of the final camera-dependent RGB colour space into the Smith and Pokorny (1975) cone activation space by means of a polynomial transformation, optimised for a set of 1269 Munsell chip reflectances. This new method is an improvement over the usual 3 × 3 matrix transformation which is only accurate for spectrally-narrowband colours. The camera-to-LMS transformation can be recalculated to consider other non-human visual systems. The dataset is available to download from our website.
|
|
|
Joost Van de Weijer, Cordelia Schmid, Jakob Verbeek, & Diane Larlus. (2009). Learning Color Names for Real-World Applications. TIP - IEEE Transaction in Image Processing, 18(7), 1512–1524.
Abstract: Color names are required in real-world applications such as image retrieval and image annotation. Traditionally, they are learned from a collection of labelled color chips. These color chips are labelled with color names within a well-defined experimental setup by human test subjects. However naming colors in real-world images differs significantly from this experimental setting. In this paper, we investigate how color names learned from color chips compare to color names learned from real-world images. To avoid hand labelling real-world images with color names we use Google Image to collect a data set. Due to limitations of Google Image this data set contains a substantial quantity of wrongly labelled data. We propose several variants of the PLSA model to learn color names from this noisy data. Experimental results show that color names learned from real-world images significantly outperform color names learned from labelled color chips for both image retrieval and image annotation.
|
|
|
Fahad Shahbaz Khan, Joost Van de Weijer, & Maria Vanrell. (2009). Top-Down Color Attention for Object Recognition. In 12th International Conference on Computer Vision (pp. 979–986).
Abstract: Generally the bag-of-words based image representation follows a bottom-up paradigm. The subsequent stages of the process: feature detection, feature description, vocabulary construction and image representation are performed independent of the intentioned object classes to be detected. In such a framework, combining multiple cues such as shape and color often provides below-expected results. This paper presents a novel method for recognizing object categories when using multiple cues by separating the shape and color cue. Color is used to guide attention by means of a top-down category-specific attention map. The color attention map is then further deployed to modulate the shape features by taking more features from regions within an image that are likely to contain an object instance. This procedure leads to a category-specific image histogram representation for each category. Furthermore, we argue that the method combines the advantages of both early and late fusion. We compare our approach with existing methods that combine color and shape cues on three data sets containing varied importance of both cues, namely, Soccer ( color predominance), Flower (color and shape parity), and PASCAL VOC Challenge 2007 (shape predominance). The experiments clearly demonstrate that in all three data sets our proposed framework significantly outperforms the state-of-the-art methods for combining color and shape information.
|
|
|
Arjan Gijsenij, Theo Gevers, & Joost Van de Weijer. (2009). Physics-based Edge Evaluation for Improved Color Constancy. In 22nd IEEE Conference on Computer Vision and Pattern Recognition (581 – 588).
Abstract: Edge-based color constancy makes use of image derivatives to estimate the illuminant. However, different edge types exist in real-world images such as shadow, geometry, material and highlight edges. These different edge types may have a distinctive influence on the performance of the illuminant estimation.
|
|
|
Xavier Boix, Josep M. Gonfaus, Fahad Shahbaz Khan, Joost Van de Weijer, Andrew Bagdanov, Marco Pedersoli, et al. (2009). Combining local and global bag-of-word representations for semantic segmentation. In Workshop on The PASCAL Visual Object Classes Challenge.
|
|
|
Arjan Gijsenij, Theo Gevers, & Joost Van de Weijer. (2010). Generalized Gamut Mapping using Image Derivative Structures for Color Constancy. IJCV - International Journal of Computer Vision, 86(2-3), 127–139.
Abstract: The gamut mapping algorithm is one of the most promising methods to achieve computational color constancy. However, so far, gamut mapping algorithms are restricted to the use of pixel values to estimate the illuminant. Therefore, in this paper, gamut mapping is extended to incorporate the statistical nature of images. It is analytically shown that the proposed gamut mapping framework is able to include any linear filter output. The main focus is on the local n-jet describing the derivative structure of an image. It is shown that derivatives have the advantage over pixel values to be invariant to disturbing effects (i.e. deviations of the diagonal model) such as saturated colors and diffuse light. Further, as the n-jet based gamut mapping has the ability to use more information than pixel values alone, the combination of these algorithms are more stable than the regular gamut mapping algorithm. Different methods of combining are proposed. Based on theoretical and experimental results conducted on large scale data sets of hyperspectral, laboratory and realworld scenes, it can be derived that (1) in case of deviations of the diagonal model, the derivative-based approach outperforms the pixel-based gamut mapping, (2) state-of-the-art algorithms are outperformed by the n-jet based gamut mapping, (3) the combination of the different n-jet based gamut
|
|
|
Eduard Vazquez, Theo Gevers, M. Lucassen, Joost Van de Weijer, & Ramon Baldrich. (2010). Saliency of Color Image Derivatives: A Comparison between Computational Models and Human Perception. JOSA A - Journal of the Optical Society of America A, 27(3), 613–621.
Abstract: In this paper, computational methods are proposed to compute color edge saliency based on the information content of color edges. The computational methods are evaluated on bottom-up saliency in a psychophysical experiment, and on a more complex task of salient object detection in real-world images. The psychophysical experiment demonstrates the relevance of using information theory as a saliency processing model and that the proposed methods are significantly better in predicting color saliency (with a human-method correspondence up to 74.75% and an observer agreement of 86.8%) than state-of-the-art models. Furthermore, results from salient object detection confirm that an early fusion of color and contrast provide accurate performance to compute visual saliency with a hit rate up to 95.2%.
|
|
|
Josep M. Gonfaus, Xavier Boix, Joost Van de Weijer, Andrew Bagdanov, Joan Serrat, & Jordi Gonzalez. (2010). Harmony Potentials for Joint Classification and Segmentation. In 23rd IEEE Conference on Computer Vision and Pattern Recognition (3280–3287).
Abstract: Hierarchical conditional random fields have been successfully applied to object segmentation. One reason is their ability to incorporate contextual information at different scales. However, these models do not allow multiple labels to be assigned to a single node. At higher scales in the image, this yields an oversimplified model, since multiple classes can be reasonable expected to appear within one region. This simplified model especially limits the impact that observations at larger scales may have on the CRF model. Neglecting the information at larger scales is undesirable since class-label estimates based on these scales are more reliable than at smaller, noisier scales. To address this problem, we propose a new potential, called harmony potential, which can encode any possible combination of class labels. We propose an effective sampling strategy that renders tractable the underlying optimization problem. Results show that our approach obtains state-of-the-art results on two challenging datasets: Pascal VOC 2009 and MSRC-21.
|
|
|
Naila Murray, & Eduard Vazquez. (2010). Lacuna Restoration: How to choose a neutral colour? In Proceedings of The CREATE 2010 Conference (248–252).
Abstract: Painting restoration which involves filling in material loss (called lacuna) is a complex process. Several standard techniques exist to tackle lacuna restoration,
and this article focuses on those techniques that employ a “neutral” colour to mask the defect. Restoration experts often disagree on the choice of such a colour and in fact, the concept of a neutral colour is controversial. We posit that a neutral colour is one that attracts relatively little visual attention for a specific lacuna. We conducted an eye tracking experiment to compare two common neutral
colour selection methods, specifically the most common local colour and the mean local colour. Results obtained demonstrate that the most common local colour triggers less visual attention in general. Notwithstanding, we have observed instances in which the most common colour triggers a significant amount of attention when subjects spent time resolving their confusion about whether or not a lacuna was part of the painting.
|
|
|
Eduard Vazquez, & Ramon Baldrich. (2010). Non-supervised goodness measure for image segmentation. In Proceedings of The CREATE 2010 Conference (334–335).
|
|
|
David Augusto Rojas, Joost Van de Weijer, & Theo Gevers. (2010). Color Edge Saliency Boosting using Natural Image Statistics. In 5th European Conference on Colour in Graphics, Imaging and Vision and 12th International Symposium on Multispectral Colour Science (228–234).
Abstract: State of the art methods for image matching, content-based retrieval and recognition use local features. Most of these still exploit only the luminance information for detection. The color saliency boosting algorithm has provided an efficient method to exploit the saliency of color edges based on information theory. However, during the design of this algorithm, some issues were not addressed in depth: (1) The method has ignored the underlying distribution of derivatives in natural images. (2) The dependence of information content in color-boosted edges on its spatial derivatives has not been quantitatively established. (3) To evaluate luminance and color contributions to saliency of edges, a parameter gradually balancing both contributions is required.
We introduce a novel algorithm, based on the principles of independent component analysis, which models the first order derivatives of color natural images by a generalized Gaussian distribution. Furthermore, using this probability model we show that for images with a Laplacian distribution, which is a particular case of generalized Gaussian distribution, the magnitudes of color-boosted edges reflect their corresponding information content. In order to evaluate the impact of color edge saliency in real world applications, we introduce an extension of the Laplacian-of-Gaussian detector to color, and the performance for image matching is evaluated. Our experiments show that our approach provides more discriminative regions in comparison with the original detector.
|
|
|
Jaime Moreno, Xavier Otazu, & Maria Vanrell. (2010). Local Perceptual Weighting in JPEG2000 for Color Images. In 5th European Conference on Colour in Graphics, Imaging and Vision and 12th International Symposium on Multispectral Colour Science (255–260).
Abstract: The aim of this work is to explain how to apply perceptual concepts to define a perceptual pre-quantizer and to improve JPEG2000 compressor. The approach consists in quantizing wavelet transform coefficients using some of the human visual system behavior properties. Noise is fatal to image compression performance, because it can be both annoying for the observer and consumes excessive bandwidth when the imagery is transmitted. Perceptual pre-quantization reduces unperceivable details and thus improve both visual impression and transmission properties. The comparison between JPEG2000 without and with perceptual pre-quantization shows that the latter is not favorable in PSNR, but the recovered image is more compressed at the same or even better visual quality measured with a weighted PSNR. Perceptual criteria were taken from the CIWaM (Chromatic Induction Wavelet Model).
|
|
|
Jaime Moreno, Xavier Otazu, & Maria Vanrell. (2010). Contribution of CIWaM in JPEG2000 Quantization for Color Images. In Proceedings of The CREATE 2010 Conference (132–136).
Abstract: The aim of this work is to explain how to apply perceptual concepts to define a perceptual pre-quantizer and to improve JPEG2000 compressor. The approach consists in quantizing wavelet transform coefficients using some of the human visual system behavior properties. Noise is fatal to image compression performance, because it can be both annoying for the observer and consumes excessive bandwidth when the imagery is transmitted. Perceptual pre-quantization reduces unperceivable details and thus improve both visual impression and transmission properties. The comparison between JPEG2000 without and with perceptual pre-quantization shows that the latter is not favorable in PSNR, but the recovered image is more compressed at the same or even better visual quality measured with a weighted PSNR. Perceptual criteria were taken from the CIWaM(ChromaticInductionWaveletModel).
|
|
|
Alicia Fornes, Josep Llados, Gemma Sanchez, Xavier Otazu, & Horst Bunke. (2010). A Combination of Features for Symbol-Independent Writer Identification in Old Music Scores. IJDAR - International Journal on Document Analysis and Recognition, 13(4), 243–259.
Abstract: The aim of writer identification is determining the writer of a piece of handwriting from a set of writers. In this paper, we present an architecture for writer identification in old handwritten music scores. Even though an important amount of music compositions contain handwritten text, the aim of our work is to use only music notation to determine the author. The main contribution is therefore the use of features extracted from graphical alphabets. Our proposal consists in combining the identification results of two different approaches, based on line and textural features. The steps of the ensemble architecture are the following. First of all, the music sheet is preprocessed for removing the staff lines. Then, music lines and texture images are generated for computing line features and textural features. Finally, the classification results are combined for identifying the writer. The proposed method has been tested on a database of old music scores from the seventeenth to nineteenth centuries, achieving a recognition rate of about 92% with 20 writers.
|
|
|
C. Alejandro Parraga, Ramon Baldrich, & Maria Vanrell. (2010). Accurate Mapping of Natural Scenes Radiance to Cone Activation Space: A New Image Dataset. In 5th European Conference on Colour in Graphics, Imaging and Vision and 12th International Symposium on Multispectral Colour Science (50–57).
Abstract: The characterization of trichromatic cameras is usually done in terms of a device-independent color space, such as the CIE 1931 XYZ space. This is indeed convenient since it allows the testing of results against colorimetric measures. We have characterized our camera to represent human cone activation by mapping the camera sensor's (RGB) responses to human (LMS) through a polynomial transformation, which can be “customized” according to the types of scenes we want to represent. Here we present a method to test the accuracy of the camera measures and a study on how the choice of training reflectances for the polynomial may alter the results.
|
|
|
Javier Vazquez, G. D. Finlayson, & Maria Vanrell. (2010). A compact singularity function to predict WCS data and unique hues. In 5th European Conference on Colour in Graphics, Imaging and Vision and 12th International Symposium on Multispectral Colour Science (33–38).
Abstract: Understanding how colour is used by the human vision system is a widely studied research field. The field, though quite advanced, still faces important unanswered questions. One of them is the explanation of the unique hues and the assignment of color names. This problem addresses the fact of different perceptual status for different colors.
Recently, Philipona and O'Regan have proposed a biological model that allows to extract the reflection properties of any surface independently of the lighting conditions. These invariant properties are the basis to compute a singularity index that predicts the asymmetries presented in unique hues and basic color categories psychophysical data, therefore is giving a further step in their explanation.
In this paper we build on their formulation and propose a new singularity index. This new formulation equally accounts for the location of the 4 peaks of the World colour survey and has two main advantages. First, it is a simple elegant numerical measure (the Philipona measurement is a rather cumbersome formula). Second, we develop a colour-based explanation for the measure.
|
|