|   | 
Details
   web
Records
Author Yasuko Sugito; Javier Vazquez; Trevor Canham; Marcelo Bertalmio
Title Image quality evaluation in professional HDR/WCG production questions the need for HDR metrics Type Journal Article
Year 2022 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP
Volume 31 Issue Pages 5163 - 5177
Keywords (down) Measurement; Image color analysis; Image coding; Production; Dynamic range; Brightness; Extraterrestrial measurements
Abstract In the quality evaluation of high dynamic range and wide color gamut (HDR/WCG) images, a number of works have concluded that native HDR metrics, such as HDR visual difference predictor (HDR-VDP), HDR video quality metric (HDR-VQM), or convolutional neural network (CNN)-based visibility metrics for HDR content, provide the best results. These metrics consider only the luminance component, but several color difference metrics have been specifically developed for, and validated with, HDR/WCG images. In this paper, we perform subjective evaluation experiments in a professional HDR/WCG production setting, under a real use case scenario. The results are quite relevant in that they show, firstly, that the performance of HDR metrics is worse than that of a classic, simple standard dynamic range (SDR) metric applied directly to the HDR content; and secondly, that the chrominance metrics specifically developed for HDR/WCG imaging have poor correlation with observer scores and are also outperformed by an SDR metric. Based on these findings, we show how a very simple framework for creating color HDR metrics, that uses only luminance SDR metrics, transfer functions, and classic color spaces, is able to consistently outperform, by a considerable margin, state-of-the-art HDR metrics on a varied set of HDR content, for both perceptual quantization (PQ) and Hybrid Log-Gamma (HLG) encoding, luminance and chroma distortions, and on different color spaces of common use.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes 600.161; 611.007 Approved no
Call Number Admin @ si @ SVG2022 Serial 3683
Permanent link to this record
 

 
Author Carlos Boned Riera; Oriol Ramos Terrades
Title Discriminative Neural Variational Model for Unbalanced Classification Tasks in Knowledge Graph Type Conference Article
Year 2022 Publication 26th International Conference on Pattern Recognition Abbreviated Journal
Volume Issue Pages 2186-2191
Keywords (down) Measurement; Couplings; Semantics; Ear; Benchmark testing; Data models; Pattern recognition
Abstract Nowadays the paradigm of link discovery problems has shown significant improvements on Knowledge Graphs. However, method performances are harmed by the unbalanced nature of this classification problem, since many methods are easily biased to not find proper links. In this paper we present a discriminative neural variational auto-encoder model, called DNVAE from now on, in which we have introduced latent variables to serve as embedding vectors. As a result, the learnt generative model approximate better the underlying distribution and, at the same time, it better differentiate the type of relations in the knowledge graph. We have evaluated this approach on benchmark knowledge graph and Census records. Results in this last data set are quite impressive since we reach the highest possible score in the evaluation metrics. However, further experiments are still needed to deeper evaluate the performance of the method in more challenging tasks.
Address Montreal; Quebec; Canada; August 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICPR
Notes DAG; 600.121; 600.162 Approved no
Call Number Admin @ si @ BoR2022 Serial 3741
Permanent link to this record
 

 
Author Marco Cotogni; Fei Yang; Claudio Cusano; Andrew Bagdanov; Joost Van de Weijer
Title Gated Class-Attention with Cascaded Feature Drift Compensation for Exemplar-free Continual Learning of Vision Transformers Type Miscellaneous
Year 2022 Publication Arxiv Abbreviated Journal
Volume Issue Pages
Keywords (down) Marco Cotogni, Fei Yang, Claudio Cusano, Andrew D. Bagdanov, Joost van de Weijer
Abstract We propose a new method for exemplar-free class incremental training of ViTs. The main challenge of exemplar-free continual learning is maintaining plasticity of the learner without causing catastrophic forgetting of previously learned tasks. This is often achieved via exemplar replay which can help recalibrate previous task classifiers to the feature drift which occurs when learning new tasks. Exemplar replay, however, comes at the cost of retaining samples from previous tasks which for many applications may not be possible. To address the problem of continual ViT training, we first propose gated class-attention to minimize the drift in the final ViT transformer block. This mask-based gating is applied to class-attention mechanism of the last transformer block and strongly regulates the weights crucial for previous tasks. Importantly, gated class-attention does not require the task-ID during inference, which distinguishes it from other parameter isolation methods. Secondly, we propose a new method of feature drift compensation that accommodates feature drift in the backbone when learning new tasks. The combination of gated class-attention and cascaded feature drift compensation allows for plasticity towards new tasks while limiting forgetting of previous ones. Extensive experiments performed on CIFAR-100, Tiny-ImageNet and ImageNet100 demonstrate that our exemplar-free method obtains competitive results when compared to rehearsal based ViT methods.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes LAMP; no proj Approved no
Call Number Admin @ si @ CYC2022 Serial 3827
Permanent link to this record
 

 
Author Zhen Xu; Sergio Escalera; Adrien Pavao; Magali Richard; Wei-Wei Tu; Quanming Yao; Huan Zhao; Isabelle Guyon
Title Codabench: Flexible, easy-to-use, and reproducible meta-benchmark platform Type Journal Article
Year 2022 Publication Patterns Abbreviated Journal PATTERNS
Volume 3 Issue 7 Pages 100543
Keywords (down) Machine learning; data science; benchmark platform; reproducibility; competitions
Abstract Obtaining a standardized benchmark of computational methods is a major issue in data-science communities. Dedicated frameworks enabling fair benchmarking in a unified environment are yet to be developed. Here, we introduce Codabench, a meta-benchmark platform that is open sourced and community driven for benchmarking algorithms or software agents versus datasets or tasks. A public instance of Codabench is open to everyone free of charge and allows benchmark organizers to fairly compare submissions under the same setting (software, hardware, data, algorithms), with custom protocols and data formats. Codabench has unique features facilitating easy organization of flexible and reproducible benchmarks, such as the possibility of reusing templates of benchmarks and supplying compute resources on demand. Codabench has been used internally and externally on various applications, receiving more than 130 users and 2,500 submissions. As illustrative use cases, we introduce four diverse benchmarks covering graph machine learning, cancer heterogeneity, clinical diagnosis, and reinforcement learning.
Address June 24, 2022
Corporate Author Thesis
Publisher Science Direct Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HuPBA Approved no
Call Number Admin @ si @ XEP2022 Serial 3764
Permanent link to this record
 

 
Author Guillermo Torres; Sonia Baeza; Carles Sanchez; Ignasi Guasch; Antoni Rosell; Debora Gil
Title An Intelligent Radiomic Approach for Lung Cancer Screening Type Journal Article
Year 2022 Publication Applied Sciences Abbreviated Journal APPLSCI
Volume 12 Issue 3 Pages 1568
Keywords (down) Lung cancer; Early diagnosis; Screening; Neural networks; Image embedding; Architecture optimization
Abstract The efficiency of lung cancer screening for reducing mortality is hindered by the high rate of false positives. Artificial intelligence applied to radiomics could help to early discard benign cases from the analysis of CT scans. The available amount of data and the fact that benign cases are a minority, constitutes a main challenge for the successful use of state of the art methods (like deep learning), which can be biased, over-fitted and lack of clinical reproducibility. We present an hybrid approach combining the potential of radiomic features to characterize nodules in CT scans and the generalization of the feed forward networks. In order to obtain maximal reproducibility with minimal training data, we propose an embedding of nodules based on the statistical significance of radiomic features for malignancy detection. This representation space of lesions is the input to a feed
forward network, which architecture and hyperparameters are optimized using own-defined metrics of the diagnostic power of the whole system. Results of the best model on an independent set of patients achieve 100% of sensitivity and 83% of specificity (AUC = 0.94) for malignancy detection.
Address Jan 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM; 600.139; 600.145 Approved no
Call Number Admin @ si @ TBS2022 Serial 3699
Permanent link to this record
 

 
Author Francesco Pelosin; Saurav Jha; Andrea Torsello; Bogdan Raducanu; Joost Van de Weijer
Title Towards exemplar-free continual learning in vision transformers: an account of attention, functional and weight regularization Type Conference Article
Year 2022 Publication IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) Abbreviated Journal
Volume Issue Pages
Keywords (down) Learning systems; Weight measurement; Image recognition; Surgery; Benchmark testing; Transformers; Stability analysis
Abstract In this paper, we investigate the continual learning of Vision Transformers (ViT) for the challenging exemplar-free scenario, with special focus on how to efficiently distill the knowledge of its crucial self-attention mechanism (SAM). Our work takes an initial step towards a surgical investigation of SAM for designing coherent continual learning methods in ViTs. We first carry out an evaluation of established continual learning regularization techniques. We then examine the effect of regularization when applied to two key enablers of SAM: (a) the contextualized embedding layers, for their ability to capture well-scaled representations with respect to the values, and (b) the prescaled attention maps, for carrying value-independent global contextual information. We depict the perks of each distilling strategy on two image recognition benchmarks (CIFAR100 and ImageNet-32) – while (a) leads to a better overall accuracy, (b) helps enhance the rigidity by maintaining competitive performances. Furthermore, we identify the limitation imposed by the symmetric nature of regularization losses. To alleviate this, we propose an asymmetric variant and apply it to the pooled output distillation (POD) loss adapted for ViTs. Our experiments confirm that introducing asymmetry to POD boosts its plasticity while retaining stability across (a) and (b). Moreover, we acknowledge low forgetting measures for all the compared methods, indicating that ViTs might be naturally inclined continual learners. 1
Address New Orleans; USA; June 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPRW
Notes LAMP; 600.147 Approved no
Call Number Admin @ si @ PJT2022 Serial 3784
Permanent link to this record
 

 
Author Joana Maria Pujadas-Mora; Alicia Fornes; Oriol Ramos Terrades; Josep Llados; Jialuo Chen; Miquel Valls-Figols; Anna Cabre
Title The Barcelona Historical Marriage Database and the Baix Llobregat Demographic Database. From Algorithms for Handwriting Recognition to Individual-Level Demographic and Socioeconomic Data Type Journal
Year 2022 Publication Historical Life Course Studies Abbreviated Journal HLCS
Volume 12 Issue Pages 99-132
Keywords (down) Individual demographic databases; Computer vision, Record linkage; Social mobility; Inequality; Migration; Word spotting; Handwriting recognition; Local censuses; Marriage Licences
Abstract The Barcelona Historical Marriage Database (BHMD) gathers records of the more than 600,000 marriages celebrated in the Diocese of Barcelona and their taxation registered in Barcelona Cathedral's so-called Marriage Licenses Books for the long period 1451–1905 and the BALL Demographic Database brings together the individual information recorded in the population registers, censuses and fiscal censuses of the main municipalities of the county of Baix Llobregat (Barcelona). In this ongoing collection 263,786 individual observations have been assembled, dating from the period between 1828 and 1965 by December 2020. The two databases started as part of different interdisciplinary research projects at the crossroads of Historical Demography and Computer Vision. Their construction uses artificial intelligence and computer vision methods as Handwriting Recognition to reduce the time of execution. However, its current state still requires some human intervention which explains the implemented crowdsourcing and game sourcing experiences. Moreover, knowledge graph techniques have allowed the application of advanced record linkage to link the same individuals and families across time and space. Moreover, we will discuss the main research lines using both databases developed so far in historical demography.
Address June 23, 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes DAG; 600.121; 600.162; 602.230; 600.140 Approved no
Call Number Admin @ si @ PFR2022 Serial 3737
Permanent link to this record
 

 
Author Ahmed M. A. Salih; Ilaria Boscolo Galazzo; Federica Cruciani; Lorenza Brusini; Petia Radeva
Title Investigating Explainable Artificial Intelligence for MRI-based Classification of Dementia: a New Stability Criterion for Explainable Methods Type Conference Article
Year 2022 Publication 29th IEEE International Conference on Image Processing Abbreviated Journal
Volume Issue Pages
Keywords (down) Image processing; Stability criteria; Machine learning; Robustness; Alzheimer's disease; Monitoring
Abstract Individuals diagnosed with Mild Cognitive Impairment (MCI) have shown an increased risk of developing Alzheimer’s Disease (AD). As such, early identification of dementia represents a key prognostic element, though hampered by complex disease patterns. Increasing efforts have focused on Machine Learning (ML) to build accurate classification models relying on a multitude of clinical/imaging variables. However, ML itself does not provide sensible explanations related to the model mechanism and feature contribution. Explainable Artificial Intelligence (XAI) represents the enabling technology in this framework, allowing to understand ML outcomes and derive human-understandable explanations. In this study, we aimed at exploring ML combined with MRI-based features and XAI to solve this classification problem and interpret the outcome. In particular, we propose a new method to assess the robustness of feature rankings provided by XAI methods, especially when multicollinearity exists. Our findings indicate that our method was able to disentangle the list of the informative features underlying dementia, with important implications for aiding personalized monitoring plans.
Address Bordeaux; France; October 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICIP
Notes MILAB Approved no
Call Number Admin @ si @ SBC2022 Serial 3789
Permanent link to this record
 

 
Author Guillem Martinez; Maya Aghaei; Martin Dijkstra; Bhalaji Nagarajan; Femke Jaarsma; Jaap van de Loosdrecht; Petia Radeva; Klaas Dijkstra
Title Hyper-Spectral Imaging for Overlapping Plastic Flakes Segmentation Type Conference Article
Year 2022 Publication 47th International Conference on Acoustics, Speech, and Signal Processing Abbreviated Journal
Volume Issue Pages
Keywords (down) Hyper-spectral imaging; plastic sorting; multi-label segmentation; bitfield encoding
Abstract In this paper, we propose a deformable convolution-based generative adversarial network (DCNGAN) for perceptual quality enhancement of compressed videos. DCNGAN is also adaptive to the quantization parameters (QPs). Compared with optical flows, deformable convolutions are more effective and efficient to align frames. Deformable convolutions can operate on multiple frames, thus leveraging more temporal information, which is beneficial for enhancing the perceptual quality of compressed videos. Instead of aligning frames in a pairwise manner, the deformable convolution can process multiple frames simultaneously, which leads to lower computational complexity. Experimental results demonstrate that the proposed DCNGAN outperforms other state-of-the-art compressed video quality enhancement algorithms.
Address Singapore; May 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICASSP
Notes MILAB; no proj Approved no
Call Number Admin @ si @ MAD2022 Serial 3767
Permanent link to this record
 

 
Author Miquel Angel Piera; Jose Luis Muñoz; Debora Gil; Gonzalo Martin; Jordi Manzano
Title A Socio-Technical Simulation Model for the Design of the Future Single Pilot Cockpit: An Opportunity to Improve Pilot Performance Type Journal Article
Year 2022 Publication IEEE Access Abbreviated Journal ACCESS
Volume 10 Issue Pages 22330-22343
Keywords (down) Human factors ; Performance evaluation ; Simulation; Sociotechnical systems ; System performance
Abstract The future deployment of single pilot operations must be supported by new cockpit computer services. Such services require an adaptive context-aware integration of technical functionalities with the concurrent tasks that a pilot must deal with. Advanced artificial intelligence supporting services and improved communication capabilities are the key enabling technologies that will render future cockpits more integrated with the present digitalized air traffic management system. However, an issue in the integration of such technologies is the lack of socio-technical analysis in the design of these teaming mechanisms. A key factor in determining how and when a service support should be provided is the dynamic evolution of pilot workload. This paper investigates how the socio-technical model-based systems engineering approach paves the way for the design of a digital assistant framework by formalizing this workload. The model was validated in an Airbus A-320 cockpit simulator, and the results confirmed the degraded pilot behavioral model and the performance impact according to different contextual flight deck information. This study contributes to practical knowledge for designing human-machine task-sharing systems.
Address Feb 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM; Approved no
Call Number Admin @ si @ PMG2022 Serial 3697
Permanent link to this record
 

 
Author Alicia Fornes; Asma Bensalah; Cristina Carmona_Duarte; Jialuo Chen; Miguel A. Ferrer; Andreas Fischer; Josep Llados; Cristina Martin; Eloy Opisso; Rejean Plamondon; Anna Scius-Bertrand; Josep Maria Tormos
Title The RPM3D Project: 3D Kinematics for Remote Patient Monitoring Type Conference Article
Year 2022 Publication Intertwining Graphonomics with Human Movements. 20th International Conference of the International Graphonomics Society, IGS 2022 Abbreviated Journal
Volume 13424 Issue Pages 217-226
Keywords (down) Healthcare applications; Kinematic; Theory of Rapid Human Movements; Human activity recognition; Stroke rehabilitation; 3D kinematics
Abstract This project explores the feasibility of remote patient monitoring based on the analysis of 3D movements captured with smartwatches. We base our analysis on the Kinematic Theory of Rapid Human Movement. We have validated our research in a real case scenario for stroke rehabilitation at the Guttmann Institute (https://www.guttmann.com/en/) (neurorehabilitation hospital), showing promising results. Our work could have a great impact in remote healthcare applications, improving the medical efficiency and reducing the healthcare costs. Future steps include more clinical validation, developing multi-modal analysis architectures (analysing data from sensors, images, audio, etc.), and exploring the application of our technology to monitor other neurodegenerative diseases.
Address June 7-9, 2022, Las Palmas de Gran Canaria, Spain
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference IGS
Notes DAG; 600.121; 600.162; 602.230; 600.140 Approved no
Call Number Admin @ si @ FBC2022 Serial 3739
Permanent link to this record
 

 
Author Wenjuan Gong; Zhang Yue; Wei Wang; Cheng Peng; Jordi Gonzalez
Title Meta-MMFNet: Meta-Learning Based Multi-Model Fusion Network for Micro-Expression Recognition Type Journal Article
Year 2022 Publication ACM Transactions on Multimedia Computing, Communications, and Applications Abbreviated Journal ACMTMC
Volume Issue Pages
Keywords (down) Feature Fusion; Model Fusion; Meta-Learning; Micro-Expression Recognition
Abstract Despite its wide applications in criminal investigations and clinical communications with patients suffering from autism, automatic micro-expression recognition remains a challenging problem because of the lack of training data and imbalanced classes problems. In this study, we proposed a meta-learning based multi-model fusion network (Meta-MMFNet) to solve the existing problems. The proposed method is based on the metric-based meta-learning pipeline, which is specifically designed for few-shot learning and is suitable for model-level fusion. The frame difference and optical flow features were fused, deep features were extracted from the fused feature, and finally in the meta-learning-based framework, weighted sum model fusion method was applied for micro-expression classification. Meta-MMFNet achieved better results than state-of-the-art methods on four datasets. The code is available at https://github.com/wenjgong/meta-fusion-based-method.
Address May 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ISE; 600.157 Approved no
Call Number Admin @ si @ GYW2022 Serial 3692
Permanent link to this record
 

 
Author Smriti Joshi; Richard Osuala; Carlos Martin-Isla; Victor M.Campello; Carla Sendra-Balcells; Karim Lekadir; Sergio Escalera
Title nn-UNet Training on CycleGAN-Translated Images for Cross-modal Domain Adaptation in Biomedical Imaging Type Conference Article
Year 2022 Publication International MICCAI Brainlesion Workshop Abbreviated Journal
Volume 12963 Issue Pages 540–551
Keywords (down) Domain adaptation; Vestibular schwannoma (VS); Deep learning; nn-UNet; CycleGAN
Abstract In recent years, deep learning models have considerably advanced the performance of segmentation tasks on Brain Magnetic Resonance Imaging (MRI). However, these models show a considerable performance drop when they are evaluated on unseen data from a different distribution. Since annotation is often a hard and costly task requiring expert supervision, it is necessary to develop ways in which existing models can be adapted to the unseen domains without any additional labelled information. In this work, we explore one such technique which extends the CycleGAN [2] architecture to generate label-preserving data in the target domain. The synthetic target domain data is used to train the nn-UNet [3] framework for the task of multi-label segmentation. The experiments are conducted and evaluated on the dataset [1] provided in the ‘Cross-Modality Domain Adaptation for Medical Image Segmentation’ challenge [23] for segmentation of vestibular schwannoma (VS) tumour and cochlea on contrast enhanced (ceT1) and high resolution (hrT2) MRI scans. In the proposed approach, our model obtains dice scores (DSC) 0.73 and 0.49 for tumour and cochlea respectively on the validation set of the dataset. This indicates the applicability of the proposed technique to real-world problems where data may be obtained by different acquisition protocols as in [1] where hrT2 images are more reliable, safer, and lower-cost alternative to ceT1.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference MICCAIW
Notes HUPBA; no menciona Approved no
Call Number Admin @ si @ JOM2022 Serial 3800
Permanent link to this record
 

 
Author Angel Sappa; Patricia Suarez; Henry Velesaca; Dario Carpio
Title Domain Adaptation in Image Dehazing: Exploring the Usage of Images from Virtual Scenarios Type Conference Article
Year 2022 Publication 16th International Conference on Computer Graphics, Visualization, Computer Vision and Image Processing Abbreviated Journal
Volume Issue Pages 85-92
Keywords (down) Domain adaptation; Synthetic hazed dataset; Dehazing
Abstract This work presents a novel domain adaptation strategy for deep learning-based approaches to solve the image dehazing
problem. Firstly, a large set of synthetic images is generated by using a realistic 3D graphic simulator; these synthetic
images contain different densities of haze, which are used for training the model that is later adapted to any real scenario.
The adaptation process requires just a few images to fine-tune the model parameters. The proposed strategy allows
overcoming the limitation of training a given model with few images. In other words, the proposed strategy implements
the adaptation of a haze removal model trained with synthetic images to real scenarios. It should be noticed that it is quite
difficult, if not impossible, to have large sets of pairs of real-world images (with and without haze) to train in a supervised
way dehazing algorithms. Experimental results are provided showing the validity of the proposed domain adaptation
strategy.
Address Lisboa; Portugal; July 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CGVCVIP
Notes MSIAU; no proj Approved no
Call Number Admin @ si @ SSV2022 Serial 3804
Permanent link to this record
 

 
Author Marc Oliu; Sarah Adel Bargal; Stan Sclaroff; Xavier Baro; Sergio Escalera
Title Multi-varied Cumulative Alignment for Domain Adaptation Type Conference Article
Year 2022 Publication 6th International Conference on Image Analysis and Processing Abbreviated Journal
Volume 13232 Issue Pages 324–334
Keywords (down) Domain Adaptation; Computer vision; Neural networks
Abstract Domain Adaptation methods can be classified into two basic families of approaches: non-parametric and parametric. Non-parametric approaches depend on statistical indicators such as feature covariances to minimize the domain shift. Non-parametric approaches tend to be fast to compute and require no additional parameters, but they are unable to leverage probability density functions with complex internal structures. Parametric approaches, on the other hand, use models of the probability distributions as surrogates in minimizing the domain shift, but they require additional trainable parameters to model these distributions. In this work, we propose a new statistical approach to minimizing the domain shift based on stochastically projecting and evaluating the cumulative density function in both domains. As with non-parametric approaches, there are no additional trainable parameters. As with parametric approaches, the internal structure of both domains’ probability distributions is considered, thus leveraging a higher amount of information when reducing the domain shift. Evaluation on standard datasets used for Domain Adaptation shows better performance of the proposed model compared to non-parametric approaches while being competitive with parametric ones. (Code available at: https://github.com/moliusimon/mca).
Address Indonesia; October 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICIAP
Notes HuPBA; no menciona Approved no
Call Number Admin @ si @ OAS2022 Serial 3777
Permanent link to this record