|   | 
Details
   web
Records
Author Juan Ramon Terven Salinas; Bogdan Raducanu; Maria Elena Meza-de-Luna; Joaquin Salas
Title Head-gestures mirroring detection in dyadic social linteractions with computer vision-based wearable devices Type Journal Article
Year 2016 Publication Neurocomputing Abbreviated Journal NEUCOM
Volume 175 Issue B Pages 866–876
Keywords (down) Head gestures recognition; Mirroring detection; Dyadic social interaction analysis; Wearable devices
Abstract During face-to-face human interaction, nonverbal communication plays a fundamental role. A relevant aspect that takes part during social interactions is represented by mirroring, in which a person tends to mimic the non-verbal behavior (head and body gestures, vocal prosody, etc.) of the counterpart. In this paper, we introduce a computer vision-based system to detect mirroring in dyadic social interactions with the use of a wearable platform. In our context, mirroring is inferred as simultaneous head noddings displayed by the interlocutors. Our approach consists of the following steps: (1) facial features extraction; (2) facial features stabilization; (3) head nodding recognition; and (4) mirroring detection. Our system achieves a mirroring detection accuracy of 72% on a custom mirroring dataset.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes LAMP; 600.072; 600.068; Approved no
Call Number Admin @ si @ TRM2016 Serial 2721
Permanent link to this record
 

 
Author Sergio Escalera; Vassilis Athitsos; Isabelle Guyon
Title Challenges in multimodal gesture recognition Type Journal Article
Year 2016 Publication Journal of Machine Learning Research Abbreviated Journal JMLR
Volume 17 Issue Pages 1-54
Keywords (down) Gesture Recognition; Time Series Analysis; Multimodal Data Analysis; Computer Vision; Pattern Recognition; Wearable sensors; Infrared Cameras; KinectTM
Abstract This paper surveys the state of the art on multimodal gesture recognition and introduces the JMLR special topic on gesture recognition 2011-2015. We began right at the start of the KinectTMrevolution when inexpensive infrared cameras providing image depth recordings became available. We published papers using this technology and other more conventional methods, including regular video cameras, to record data, thus providing a good overview of uses of machine learning and computer vision using multimodal data in this area of application. Notably, we organized a series of challenges and made available several datasets we recorded for that purpose, including tens of thousands
of videos, which are available to conduct further research. We also overview recent state of the art works on gesture recognition based on a proposed taxonomy for gesture recognition, discussing challenges and future lines of research.
Address
Corporate Author Thesis
Publisher Place of Publication Editor Zhuowen Tu
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HuPBA;MILAB; Approved no
Call Number Admin @ si @ EAG2016 Serial 2764
Permanent link to this record
 

 
Author Gerard Canal; Sergio Escalera; Cecilio Angulo
Title A Real-time Human-Robot Interaction system based on gestures for assistive scenarios Type Journal Article
Year 2016 Publication Computer Vision and Image Understanding Abbreviated Journal CVIU
Volume 149 Issue Pages 65-77
Keywords (down) Gesture recognition; Human Robot Interaction; Dynamic Time Warping; Pointing location estimation
Abstract Natural and intuitive human interaction with robotic systems is a key point to develop robots assisting people in an easy and effective way. In this paper, a Human Robot Interaction (HRI) system able to recognize gestures usually employed in human non-verbal communication is introduced, and an in-depth study of its usability is performed. The system deals with dynamic gestures such as waving or nodding which are recognized using a Dynamic Time Warping approach based on gesture specific features computed from depth maps. A static gesture consisting in pointing at an object is also recognized. The pointed location is then estimated in order to detect candidate objects the user may refer to. When the pointed object is unclear for the robot, a disambiguation procedure by means of either a verbal or gestural dialogue is performed. This skill would lead to the robot picking an object in behalf of the user, which could present difficulties to do it by itself. The overall system — which is composed by a NAO and Wifibot robots, a KinectTM v2 sensor and two laptops — is firstly evaluated in a structured lab setup. Then, a broad set of user tests has been completed, which allows to assess correct performance in terms of recognition rates, easiness of use and response times.
Address
Corporate Author Thesis
Publisher Elsevier B.V. Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HuPBA;MILAB; Approved no
Call Number Admin @ si @ CEA2016 Serial 2768
Permanent link to this record
 

 
Author Miguel Angel Bautista; Antonio Hernandez; Sergio Escalera; Laura Igual; Oriol Pujol; Josep Moya; Veronica Violant; Maria Teresa Anguera
Title A Gesture Recognition System for Detecting Behavioral Patterns of ADHD Type Journal Article
Year 2016 Publication IEEE Transactions on System, Man and Cybernetics, Part B Abbreviated Journal TSMCB
Volume 46 Issue 1 Pages 136-147
Keywords (down) Gesture Recognition; ADHD; Gaussian Mixture Models; Convex Hulls; Dynamic Time Warping; Multi-modal RGB-Depth data
Abstract We present an application of gesture recognition using an extension of Dynamic Time Warping (DTW) to recognize behavioural patterns of Attention Deficit Hyperactivity Disorder (ADHD). We propose an extension of DTW using one-class classifiers in order to be able to encode the variability of a gesture category, and thus, perform an alignment between a gesture sample and a gesture class. We model the set of gesture samples of a certain gesture category using either GMMs or an approximation of Convex Hulls. Thus, we add a theoretical contribution to classical warping path in DTW by including local modeling of intra-class gesture variability. This methodology is applied in a clinical context, detecting a group of ADHD behavioural patterns defined by experts in psychology/psychiatry, to provide support to clinicians in the diagnose procedure. The proposed methodology is tested on a novel multi-modal dataset (RGB plus Depth) of ADHD children recordings with behavioural patterns. We obtain satisfying results when compared to standard state-of-the-art approaches in the DTW context.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HuPBA; MILAB; Approved no
Call Number Admin @ si @ BHE2016 Serial 2566
Permanent link to this record
 

 
Author Egils Avots; M. Daneshmanda; Andres Traumann; Sergio Escalera; G. Anbarjafaria
Title Automatic garment retexturing based on infrared information Type Journal Article
Year 2016 Publication Computers & Graphics Abbreviated Journal CG
Volume 59 Issue Pages 28-38
Keywords (down) Garment Retexturing; Texture Mapping; Infrared Images; RGB-D Acquisition Devices; Shading
Abstract This paper introduces a new automatic technique for garment retexturing using a single static image along with the depth and infrared information obtained using the Microsoft Kinect II as the RGB-D acquisition device. First, the garment is segmented out from the image using either the Breadth-First Search algorithm or the semi-automatic procedure provided by the GrabCut method. Then texture domain coordinates are computed for each pixel belonging to the garment using normalised 3D information. Afterwards, shading is applied to the new colours from the texture image. As the main contribution of the proposed method, the latter information is obtained based on extracting a linear map transforming the colour present on the infrared image to that of the RGB colour channels. One of the most important impacts of this strategy is that the resulting retexturing algorithm is colour-, pattern- and lighting-invariant. The experimental results show that it can be used to produce realistic representations, which is substantiated through implementing it under various experimentation scenarios, involving varying lighting intensities and directions. Successful results are accomplished also on video sequences, as well as on images of subjects taking different poses. Based on the Mean Opinion Score analysis conducted on many randomly chosen users, it has been shown to produce more realistic-looking results compared to the existing state-of-the-art methods suggested in the literature. From a wide perspective, the proposed method can be used for retexturing all sorts of segmented surfaces, although the focus of this study is on garment retexturing, and the investigation of the configurations is steered accordingly, since the experiments target an application in the context of virtual fitting rooms.
Address
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HuPBA;MILAB; Approved no
Call Number Admin @ si @ ADT2016 Serial 2759
Permanent link to this record
 

 
Author Mariella Dimiccoli
Title Figure-ground segregation: A fully nonlocal approach Type Journal Article
Year 2016 Publication Vision Research Abbreviated Journal VR
Volume 126 Issue Pages 308-317
Keywords (down) Figure-ground segregation; Nonlocal approach; Directional linear voting; Nonlinear diffusion
Abstract We present a computational model that computes and integrates in a nonlocal fashion several configural cues for automatic figure-ground segregation. Our working hypothesis is that the figural status of each pixel is a nonlocal function of several geometric shape properties and it can be estimated without explicitly relying on object boundaries. The methodology is grounded on two elements: multi-directional linear voting and nonlinear diffusion. A first estimation of the figural status of each pixel is obtained as a result of a voting process, in which several differently oriented line-shaped neighborhoods vote to express their belief about the figural status of the pixel. A nonlinear diffusion process is then applied to enforce the coherence of figural status estimates among perceptually homogeneous regions. Computer simulations fit human perception and match the experimental evidence that several cues cooperate in defining figure-ground segregation. The results of this work suggest that figure-ground segregation involves feedback from cells with larger receptive fields in higher visual cortical areas.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MILAB; Approved no
Call Number Admin @ si @ Dim2016b Serial 2623
Permanent link to this record
 

 
Author Dennis H. Lundtoft; Kamal Nasrollahi; Thomas B. Moeslund; Sergio Escalera
Title Spatiotemporal Facial Super-Pixels for Pain Detection Type Conference Article
Year 2016 Publication 9th Conference on Articulated Motion and Deformable Objects Abbreviated Journal
Volume Issue Pages
Keywords (down) Facial images; Super-pixels; Spatiotemporal filters; Pain detection
Abstract Best student paper award.
Pain detection using facial images is of critical importance in many Health applications. Since pain is a spatiotemporal process, recent works on this topic employ facial spatiotemporal features to detect pain. These systems extract such features from the entire area of the face. In this paper, we show that by employing super-pixels we can divide the face into three regions, in a way that only one of these regions (about one third of the face) contributes to the pain estimation and the other two regions can be discarded. The experimental results on the UNBCMcMaster database show that the proposed system using this single region outperforms state-of-the-art systems in detecting no-pain scenarios, while it reaches comparable results in detecting weak and severe pain scenarios.
Address Palma de Mallorca; Spain; July 2016
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference AMDO
Notes HUPBA;MILAB Approved no
Call Number Admin @ si @ LNM2016 Serial 2847
Permanent link to this record
 

 
Author Ciprian Corneanu; Marc Oliu; Jeffrey F. Cohn; Sergio Escalera
Title Survey on RGB, 3D, Thermal, and Multimodal Approaches for Facial Expression Recognition: History Type Journal Article
Year 2016 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI
Volume 28 Issue 8 Pages 1548-1568
Keywords (down) Facial expression; affect; emotion recognition; RGB; 3D; thermal; multimodal
Abstract Facial expressions are an important way through which humans interact socially. Building a system capable of automatically recognizing facial expressions from images and video has been an intense field of study in recent years. Interpreting such expressions remains challenging and much research is needed about the way they relate to human affect. This paper presents a general overview of automatic RGB, 3D, thermal and multimodal facial expression analysis. We define a new taxonomy for the field, encompassing all steps from face detection to facial expression recognition, and describe and classify the state of the art methods accordingly. We also present the important datasets and the bench-marking of most influential methods. We conclude with a general discussion about trends, important questions and future lines of research.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HuPBA;MILAB; Approved no
Call Number Admin @ si @ COC2016 Serial 2718
Permanent link to this record
 

 
Author Azadeh S. Mozafari; David Vazquez; Mansour Jamzad; Antonio Lopez
Title Node-Adapt, Path-Adapt and Tree-Adapt:Model-Transfer Domain Adaptation for Random Forest Type Miscellaneous
Year 2016 Publication Arxiv Abbreviated Journal
Volume Issue Pages
Keywords (down) Domain Adaptation; Pedestrian detection; Random Forest
Abstract Random Forest (RF) is a successful paradigm for learning classifiers due to its ability to learn from large feature spaces and seamlessly integrate multi-class classification, as well as the achieved accuracy and processing efficiency. However, as many other classifiers, RF requires domain adaptation (DA) provided that there is a mismatch between the training (source) and testing (target) domains which provokes classification degradation. Consequently, different RF-DA methods have been proposed, which not only require target-domain samples but revisiting the source-domain ones, too. As novelty, we propose three inherently different methods (Node-Adapt, Path-Adapt and Tree-Adapt) that only require the learned source-domain RF and a relatively few target-domain samples for DA, i.e. source-domain samples do not need to be available. To assess the performance of our proposals we focus on image-based object detection, using the pedestrian detection problem as challenging proof-of-concept. Moreover, we use the RF with expert nodes because it is a competitive patch-based pedestrian model. We test our Node-, Path- and Tree-Adapt methods in standard benchmarks, showing that DA is largely achieved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ADAS Approved no
Call Number ADAS @ adas @ MVJ2016 Serial 2868
Permanent link to this record
 

 
Author Jiaolong Xu; Sebastian Ramos; David Vazquez; Antonio Lopez
Title Hierarchical Adaptive Structural SVM for Domain Adaptation Type Journal Article
Year 2016 Publication International Journal of Computer Vision Abbreviated Journal IJCV
Volume 119 Issue 2 Pages 159-178
Keywords (down) Domain Adaptation; Pedestrian Detection
Abstract A key topic in classification is the accuracy loss produced when the data distribution in the training (source) domain differs from that in the testing (target) domain. This is being recognized as a very relevant problem for many
computer vision tasks such as image classification, object detection, and object category recognition. In this paper, we present a novel domain adaptation method that leverages multiple target domains (or sub-domains) in a hierarchical adaptation tree. The core idea is to exploit the commonalities and differences of the jointly considered target domains.
Given the relevance of structural SVM (SSVM) classifiers, we apply our idea to the adaptive SSVM (A-SSVM), which only requires the target domain samples together with the existing source-domain classifier for performing the desired adaptation. Altogether, we term our proposal as hierarchical A-SSVM (HA-SSVM).
As proof of concept we use HA-SSVM for pedestrian detection, object category recognition and face recognition. In the former we apply HA-SSVM to the deformable partbased model (DPM) while in the rest HA-SSVM is applied to multi-category classifiers. We will show how HA-SSVM is effective in increasing the detection/recognition accuracy with respect to adaptation strategies that ignore the structure of the target data. Since, the sub-domains of the target data are not always known a priori, we shown how HA-SSVM can incorporate sub-domain discovery for object category recognition.
Address
Corporate Author Thesis
Publisher Springer US Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0920-5691 ISBN Medium
Area Expedition Conference
Notes ADAS; 600.085; 600.082; 600.076 Approved no
Call Number Admin @ si @ XRV2016 Serial 2669
Permanent link to this record
 

 
Author Jiaolong Xu; David Vazquez; Krystian Mikolajczyk; Antonio Lopez
Title Hierarchical online domain adaptation of deformable part-based models Type Conference Article
Year 2016 Publication IEEE International Conference on Robotics and Automation Abbreviated Journal
Volume Issue Pages 5536-5541
Keywords (down) Domain Adaptation; Pedestrian Detection
Abstract We propose an online domain adaptation method for the deformable part-based model (DPM). The online domain adaptation is based on a two-level hierarchical adaptation tree, which consists of instance detectors in the leaf nodes and a category detector at the root node. Moreover, combined with a multiple object tracking procedure (MOT), our proposal neither requires target-domain annotated data nor revisiting the source-domain data for performing the source-to-target domain adaptation of the DPM. From a practical point of view this means that, given a source-domain DPM and new video for training on a new domain without object annotations, our procedure outputs a new DPM adapted to the domain represented by the video. As proof-of-concept we apply our proposal to the challenging task of pedestrian detection. In this case, each instance detector is an exemplar classifier trained online with only one pedestrian per frame. The pedestrian instances are collected by MOT and the hierarchical model is constructed dynamically according to the pedestrian trajectories. Our experimental results show that the adapted detector achieves the accuracy of recent supervised domain adaptation methods (i.e., requiring manually annotated targetdomain data), and improves the source detector more than 10 percentage points.
Address Stockholm; Sweden; May 2016
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICRA
Notes ADAS; 600.085; 600.082; 600.076 Approved no
Call Number Admin @ si @ XVM2016 Serial 2728
Permanent link to this record
 

 
Author German Ros; Laura Sellart; Joanna Materzynska; David Vazquez; Antonio Lopez
Title The SYNTHIA Dataset: A Large Collection of Synthetic Images for Semantic Segmentation of Urban Scenes Type Conference Article
Year 2016 Publication 29th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal
Volume Issue Pages 3234-3243
Keywords (down) Domain Adaptation; Autonomous Driving; Virtual Data; Semantic Segmentation
Abstract Vision-based semantic segmentation in urban scenarios is a key functionality for autonomous driving. The irruption of deep convolutional neural networks (DCNNs) allows to foresee obtaining reliable classifiers to perform such a visual task. However, DCNNs require to learn many parameters from raw images; thus, having a sufficient amount of diversified images with this class annotations is needed. These annotations are obtained by a human cumbersome labour specially challenging for semantic segmentation, since pixel-level annotations are required. In this paper, we propose to use a virtual world for automatically generating realistic synthetic images with pixel-level annotations. Then, we address the question of how useful can be such data for the task of semantic segmentation; in particular, when using a DCNN paradigm. In order to answer this question we have generated a synthetic diversified collection of urban images, named SynthCity, with automatically generated class annotations. We use SynthCity in combination with publicly available real-world urban images with manually provided annotations. Then, we conduct experiments on a DCNN setting that show how the inclusion of SynthCity in the training stage significantly improves the performance of the semantic segmentation task
Address Las Vegas; USA; June 2016
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPR
Notes ADAS; 600.085; 600.082; 600.076 Approved no
Call Number ADAS @ adas @ RSM2016 Serial 2739
Permanent link to this record
 

 
Author Juan Ignacio Toledo; Sebastian Sudholt; Alicia Fornes; Jordi Cucurull; A. Fink; Josep Llados
Title Handwritten Word Image Categorization with Convolutional Neural Networks and Spatial Pyramid Pooling Type Conference Article
Year 2016 Publication Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR) Abbreviated Journal
Volume 10029 Issue Pages 543-552
Keywords (down) Document image analysis; Word image categorization; Convolutional neural networks; Named entity detection
Abstract The extraction of relevant information from historical document collections is one of the key steps in order to make these documents available for access and searches. The usual approach combines transcription and grammars in order to extract semantically meaningful entities. In this paper, we describe a new method to obtain word categories directly from non-preprocessed handwritten word images. The method can be used to directly extract information, being an alternative to the transcription. Thus it can be used as a first step in any kind of syntactical analysis. The approach is based on Convolutional Neural Networks with a Spatial Pyramid Pooling layer to deal with the different shapes of the input images. We performed the experiments on a historical marriage record dataset, obtaining promising results.
Address Merida; Mexico; December 2016
Corporate Author Thesis
Publisher Springer International Publishing Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN 978-3-319-49054-0 Medium
Area Expedition Conference S+SSPR
Notes DAG; 600.097; 602.006 Approved no
Call Number Admin @ si @ TSF2016 Serial 2877
Permanent link to this record
 

 
Author Daniel Hernandez; Alejandro Chacon; Antonio Espinosa; David Vazquez; Juan Carlos Moure; Antonio Lopez
Title Stereo Matching using SGM on the GPU Type Report
Year 2016 Publication Programming and Tuning Massively Parallel Systems Abbreviated Journal PUMPS
Volume Issue Pages
Keywords (down) CUDA; Stereo; Autonomous Vehicle
Abstract Dense, robust and real-time computation of depth information from stereo-camera systems is a computationally demanding requirement for robotics, advanced driver assistance systems (ADAS) and autonomous vehicles. Semi-Global Matching (SGM) is a widely used algorithm that propagates consistency constraints along several paths across the image. This work presents a real-time system producing reliable disparity estimation results on the new embedded energy efficient GPU devices. Our design runs on a Tegra X1 at 42 frames per second (fps) for an image size of 640x480, 128 disparity levels, and using 4 path directions for the SGM method.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference PUMPS
Notes ADAS; 600.085; 600.087; 600.076 Approved no
Call Number ADAS @ adas @ HCE2016b Serial 2776
Permanent link to this record
 

 
Author Antonio Hernandez; Sergio Escalera; Stan Sclaroff
Title Poselet-basedContextual Rescoring for Human Pose Estimation via Pictorial Structures Type Journal Article
Year 2016 Publication International Journal of Computer Vision Abbreviated Journal IJCV
Volume 118 Issue 1 Pages 49–64
Keywords (down) Contextual rescoring; Poselets; Human pose estimation
Abstract In this paper we propose a contextual rescoring method for predicting the position of body parts in a human pose estimation framework. A set of poselets is incorporated in the model, and their detections are used to extract spatial and score-related features relative to other body part hypotheses. A method is proposed for the automatic discovery of a compact subset of poselets that covers the different poses in a set of validation images while maximizing precision. A rescoring mechanism is defined as a set-based boosting classifier that computes a new score for each body joint detection, given its relationship to detections of other body joints and mid-level parts in the image. This new score is incorporated in the pictorial structure model as an additional unary potential, following the recent work of Pishchulin et al. Experiments on two benchmarks show comparable results to Pishchulin et al. while reducing the size of the mid-level representation by an order of magnitude, reducing the execution time by 68 % accordingly.
Address
Corporate Author Thesis
Publisher Springer US Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0920-5691 ISBN Medium
Area Expedition Conference
Notes HuPBA;MILAB; Approved no
Call Number Admin @ si @ HES2016 Serial 2719
Permanent link to this record