|   | 
Details
   web
Records
Author Chirster Loob; Pejman Rasti; Iiris Lusi; Julio C. S. Jacques Junior; Xavier Baro; Sergio Escalera; Tomasz Sapinski; Dorota Kaminska; Gholamreza Anbarjafari
Title Dominant and Complementary Multi-Emotional Facial Expression Recognition Using C-Support Vector Classification Type Conference Article
Year 2017 Publication 12th IEEE International Conference on Automatic Face and Gesture Recognition Abbreviated Journal
Volume Issue Pages
Keywords (up)
Abstract We are proposing a new facial expression recognition model which introduces 30+ detailed facial expressions recognisable by any artificial intelligence interacting with a human. Throughout this research, we introduce two categories for the emotions, namely, dominant emotions and complementary emotions. In this research paper the complementary emotion is recognised by using the eye region if the dominant emotion is angry, fearful or sad, and if the dominant emotion is disgust or happiness the complementary emotion is mainly conveyed by the mouth. In order to verify the tagged dominant and complementary emotions, randomly chosen people voted for the recognised multi-emotional facial expressions. The average results of voting are showing that 73.88% of the voters agree on the correctness of the recognised multi-emotional facial expressions.
Address Washington; DC; USA; May 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference FG
Notes HUPBA; no menciona Approved no
Call Number Admin @ si @ LRL2017 Serial 2925
Permanent link to this record
 

 
Author Pau Rodriguez; Guillem Cucurull; Jordi Gonzalez; Josep M. Gonfaus; Kamal Nasrollahi; Thomas B. Moeslund; Xavier Roca
Title Deep Pain: Exploiting Long Short-Term Memory Networks for Facial Expression Classification Type Journal Article
Year 2017 Publication IEEE Transactions on cybernetics Abbreviated Journal Cyber
Volume Issue Pages 1-11
Keywords (up)
Abstract Pain is an unpleasant feeling that has been shown to be an important factor for the recovery of patients. Since this is costly in human resources and difficult to do objectively, there is the need for automatic systems to measure it. In this paper, contrary to current state-of-the-art techniques in pain assessment, which are based on facial features only, we suggest that the performance can be enhanced by feeding the raw frames to deep learning models, outperforming the latest state-of-the-art results while also directly facing the problem of imbalanced data. As a baseline, our approach first uses convolutional neural networks (CNNs) to learn facial features from VGG_Faces, which are then linked to a long short-term memory to exploit the temporal relation between video frames. We further compare the performances of using the so popular schema based on the canonically normalized appearance versus taking into account the whole image. As a result, we outperform current state-of-the-art area under the curve performance in the UNBC-McMaster Shoulder Pain Expression Archive Database. In addition, to evaluate the generalization properties of our proposed methodology on facial motion recognition, we also report competitive results in the Cohn Kanade+ facial expression database.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ISE; 600.119; 600.098 Approved no
Call Number Admin @ si @ RCG2017a Serial 2926
Permanent link to this record
 

 
Author Pau Rodriguez; Jordi Gonzalez; Jordi Cucurull; Josep M. Gonfaus; Xavier Roca
Title Regularizing CNNs with Locally Constrained Decorrelations Type Conference Article
Year 2017 Publication 5th International Conference on Learning Representations Abbreviated Journal
Volume Issue Pages
Keywords (up)
Abstract
Address Toulon; France; April 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICLR
Notes ISE; 602.143; 600.119; 600.098 Approved no
Call Number Admin @ si @ RGC2017 Serial 2927
Permanent link to this record
 

 
Author Hana Jarraya; Muhammad Muzzamil Luqman; Jean-Yves Ramel
Title Improving Fuzzy Multilevel Graph Embedding Technique by Employing Topological Node Features: An Application to Graphics Recognition Type Book Chapter
Year 2017 Publication Graphics Recognition. Current Trends and Challenges Abbreviated Journal
Volume 9657 Issue Pages
Keywords (up)
Abstract
Address
Corporate Author Thesis
Publisher Springer Place of Publication Editor B. Lamiroy; R Dueire Lins
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference GREC
Notes DAG; 600.097; 600.121 Approved no
Call Number Admin @ si @ JLR2017 Serial 2928
Permanent link to this record
 

 
Author Anjan Dutta; Josep Llados; Horst Bunke; Umapada Pal
Title Product graph-based higher order contextual similarities for inexact subgraph matching Type Journal Article
Year 2018 Publication Pattern Recognition Abbreviated Journal PR
Volume 76 Issue Pages 596-611
Keywords (up)
Abstract Many algorithms formulate graph matching as an optimization of an objective function of pairwise quantification of nodes and edges of two graphs to be matched. Pairwise measurements usually consider local attributes but disregard contextual information involved in graph structures. We address this issue by proposing contextual similarities between pairs of nodes. This is done by considering the tensor product graph (TPG) of two graphs to be matched, where each node is an ordered pair of nodes of the operand graphs. Contextual similarities between a pair of nodes are computed by accumulating weighted walks (normalized pairwise similarities) terminating at the corresponding paired node in TPG. Once the contextual similarities are obtained, we formulate subgraph matching as a node and edge selection problem in TPG. We use contextual similarities to construct an objective function and optimize it with a linear programming approach. Since random walk formulation through TPG takes into account higher order information, it is not a surprise that we obtain more reliable similarities and better discrimination among the nodes and edges. Experimental results shown on synthetic as well as real benchmarks illustrate that higher order contextual similarities increase discriminating power and allow one to find approximate solutions to the subgraph matching problem.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes DAG; 602.167; 600.097; 600.121 Approved no
Call Number Admin @ si @ DLB2018 Serial 3083
Permanent link to this record
 

 
Author Karim Lekadir; Alfiia Galimzianova; Angels Betriu; Maria del Mar Vila; Laura Igual; Daniel L. Rubin; Elvira Fernandez-Giraldez; Petia Radeva; Sandy Napel
Title A Convolutional Neural Network for Automatic Characterization of Plaque Composition in Carotid Ultrasound Type Journal Article
Year 2017 Publication IEEE Journal Biomedical and Health Informatics Abbreviated Journal J-BHI
Volume 21 Issue 1 Pages 48-55
Keywords (up)
Abstract Characterization of carotid plaque composition, more specifically the amount of lipid core, fibrous tissue, and calcified tissue, is an important task for the identification of plaques that are prone to rupture, and thus for early risk estimation of cardiovascular and cerebrovascular events. Due to its low costs and wide availability, carotid ultrasound has the potential to become the modality of choice for plaque characterization in clinical practice. However, its significant image noise, coupled with the small size of the plaques and their complex appearance, makes it difficult for automated techniques to discriminate between the different plaque constituents. In this paper, we propose to address this challenging problem by exploiting the unique capabilities of the emerging deep learning framework. More specifically, and unlike existing works which require a priori definition of specific imaging features or thresholding values, we propose to build a convolutional neural network (CNN) that will automatically extract from the images the information that is optimal for the identification of the different plaque constituents. We used approximately 90 000 patches extracted from a database of images and corresponding expert plaque characterizations to train and to validate the proposed CNN. The results of cross-validation experiments show a correlation of about 0.90 with the clinical assessment for the estimation of lipid core, fibrous cap, and calcified tissue areas, indicating the potential of deep learning for the challenging task of automatic characterization of plaque composition in carotid ultrasound.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MILAB; no menciona Approved no
Call Number Admin @ si @ LGB2017 Serial 2931
Permanent link to this record
 

 
Author Umut Guclu; Yagmur Gucluturk; Meysam Madadi; Sergio Escalera; Xavier Baro; Jordi Gonzalez; Rob van Lier; Marcel A. J. van Gerven
Title End-to-end semantic face segmentation with conditional random fields as convolutional, recurrent and adversarial networks Type Miscellaneous
Year 2017 Publication Arxiv Abbreviated Journal
Volume Issue Pages
Keywords (up)
Abstract arXiv:1703.03305
Recent years have seen a sharp increase in the number of related yet distinct advances in semantic segmentation. Here, we tackle this problem by leveraging the respective strengths of these advances. That is, we formulate a conditional random field over a four-connected graph as end-to-end trainable convolutional and recurrent networks, and estimate them via an adversarial process. Importantly, our model learns not only unary potentials but also pairwise
potentials, while aggregating multi-scale contexts and controlling higher-order inconsistencies.
We evaluate our model on two standard benchmark datasets for semantic face segmentation, achieving state-of-the-art results on both of them.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HuPBA; ISE; 600.098; 600.119 Approved no
Call Number Admin @ si @ GGM2017 Serial 2932
Permanent link to this record
 

 
Author Anastasios Doulamis; Nikolaos Doulamis; Marco Bertini; Jordi Gonzalez; Thomas B. Moeslund
Title Introduction to the Special Issue on the Analysis and Retrieval of Events/Actions and Workflows in Video Streams Type Journal Article
Year 2016 Publication Multimedia Tools and Applications Abbreviated Journal MTAP
Volume 75 Issue 22 Pages 14985-14990
Keywords (up)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ISE; HUPBA Approved no
Call Number Admin @ si @ DDB2016 Serial 2934
Permanent link to this record
 

 
Author H. Martin Kjer; Jens Fagertun; Sergio Vera; Debora Gil
Title Medial structure generation for registration of anatomical structures Type Book Chapter
Year 2017 Publication Skeletonization, Theory, Methods and Applications Abbreviated Journal
Volume 11 Issue Pages
Keywords (up)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM; 600.096; 600.075; 600.145 Approved no
Call Number Admin @ si @ MFV2017a Serial 2935
Permanent link to this record
 

 
Author Mireia Sole; Joan Blanco; Debora Gil; Oliver Valero; G. Fonseka; M. Lawrie; Francesca Vidal; Zaida Sarrate
Title Chromosome Territories in Mice Spermatogenesis: A new three-dimensional methodology of study Type Conference Article
Year 2017 Publication 11th European CytoGenesis Conference Abbreviated Journal
Volume Issue Pages
Keywords (up)
Abstract
Address Florencia; Italia; July 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ECA
Notes IAM; 600.096; 600.145 Approved no
Call Number Admin @ si @ SBG2017a Serial 2936
Permanent link to this record
 

 
Author Antonio Lopez; Atsushi Imiya; Tomas Pajdla; Jose Manuel Alvarez
Title Computer Vision in Vehicle Technology: Land, Sea & Air Type Book Whole
Year 2017 Publication Abbreviated Journal
Volume Issue Pages 161-163
Keywords (up)
Abstract Summary This chapter examines different vision-based commercial solutions for real-live problems related to vehicles. It is worth mentioning the recent astonishing performance of deep convolutional neural networks (DCNNs) in difficult visual tasks such as image classification, object recognition/localization/detection, and semantic segmentation. In fact,
different DCNN architectures are already being explored for low-level tasks such as optical flow and disparity computation, and higher level ones such as place recognition.
Address
Corporate Author Thesis
Publisher John Wiley & Sons, Ltd Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-1-118-86807-2 Medium
Area Expedition Conference
Notes ADAS; 600.118 Approved no
Call Number Admin @ si @ LIP2017a Serial 2937
Permanent link to this record
 

 
Author Carles Sanchez; Debora Gil; T. Gache; N. Koufos; Marta Diez-Ferrer; Antoni Rosell
Title SENSA: a System for Endoscopic Stenosis Assessment Type Conference Article
Year 2016 Publication 28th Conference of the international Society for Medical Innovation and Technology Abbreviated Journal
Volume Issue Pages
Keywords (up)
Abstract Documenting the severity of a static or dynamic Central Airway Obstruction (CAO) is crucial to establish proper diagnosis and treatment, predict possible treatment effects and better follow-up the patients. The subjective visual evaluation of a stenosis during video-bronchoscopy still remains the most common way to assess a CAO in spite of a consensus among experts for a need to standardize all calculations [1].
The Computer Vision Center in cooperation with the «Hospital de Bellvitge», has developed a System for Endoscopic Stenosis Assessment (SENSA), which computes CAO directly by analyzing standard bronchoscopic data without the need of using other imaging tecnologies.
Address Rotterdam; The Netherlands; October 2016
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference SMIT
Notes IAM; Approved no
Call Number Admin @ si @ SGG2016 Serial 2942
Permanent link to this record
 

 
Author Marta Diez-Ferrer; Debora Gil; Elena Carreño; Susana Padrones; Samantha Aso; Vanesa Vicens; Noelia Cubero de Frutos; Rosa Lopez Lisbona; Carles Sanchez; Agnes Borras; Antoni Rosell
Title Positive Airway Pressure-Enhanced CT to Improve Virtual Bronchoscopic Navigation Type Journal Article
Year 2017 Publication European Respiratory Journal Abbreviated Journal ERJ
Volume Issue Pages
Keywords (up)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM Approved no
Call Number Admin @ si @ DGC2017b Serial 3632
Permanent link to this record
 

 
Author Quentin Angermann; Jorge Bernal; Cristina Sanchez Montes; Maroua Hammami; Gloria Fernandez Esparrach; Xavier Dray; Olivier Romain; F. Javier Sanchez; Aymeric Histace
Title Real-Time Polyp Detection in Colonoscopy Videos: A Preliminary Study For Adapting Still Frame-based Methodology To Video Sequences Analysis Type Conference Article
Year 2017 Publication 31st International Congress and Exhibition on Computer Assisted Radiology and Surgery Abbreviated Journal
Volume Issue Pages
Keywords (up)
Abstract
Address Barcelona; Spain; June 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CARS
Notes MV; no menciona Approved no
Call Number Admin @ si @ ABS2017 Serial 2947
Permanent link to this record
 

 
Author Lasse Martensson; Anders Hast; Alicia Fornes
Title Word Spotting as a Tool for Scribal Attribution Type Conference Article
Year 2017 Publication 2nd Conference of the association of Digital Humanities in the Nordic Countries Abbreviated Journal
Volume Issue Pages 87-89
Keywords (up)
Abstract
Address Gothenburg; Suecia; March 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-91-88348-83-8 Medium
Area Expedition Conference DHN
Notes DAG; 600.097; 600.121 Approved no
Call Number Admin @ si @ MHF2017 Serial 2954
Permanent link to this record