|   | 
Details
   web
Records
Author Suman Ghosh; Ernest Valveny
Title Query by String word spotting based on character bi-gram indexing Type Conference Article
Year 2015 Publication 13th International Conference on Document Analysis and Recognition ICDAR2015 Abbreviated Journal
Volume Issue Pages 881-885
Keywords (up)
Abstract In this paper we propose a segmentation-free query by string word spotting method. Both the documents and query strings are encoded using a recently proposed word representa- tion that projects images and strings into a common atribute space based on a pyramidal histogram of characters(PHOC). These attribute models are learned using linear SVMs over the Fisher Vector representation of the images along with the PHOC labels of the corresponding strings. In order to search through the whole page, document regions are indexed per character bi- gram using a similar attribute representation. On top of that, we propose an integral image representation of the document using a simplified version of the attribute model for efficient computation. Finally we introduce a re-ranking step in order to boost retrieval performance. We show state-of-the-art results for segmentation-free query by string word spotting in single-writer and multi-writer standard datasets
Address Nancy; France; August 2015
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICDAR
Notes DAG; 600.077 Approved no
Call Number Admin @ si @ GhV2015a Serial 2715
Permanent link to this record
 

 
Author Fadi Dornaika; Bogdan Raducanu; Alireza Bosaghzadeh
Title Facial expression recognition based on multi observations with application to social robotics Type Book Chapter
Year 2015 Publication Emotional and Facial Expressions: Recognition, Developmental Differences and Social Importance Abbreviated Journal
Volume Issue Pages 153-166
Keywords (up)
Abstract Human-robot interaction is a hot topic nowadays in the social robotics
community. One crucial aspect is represented by the affective communication
which comes encoded through the facial expressions. In this chapter, we propose a novel approach for facial expression recognition, which exploits an efficient and adaptive graph-based label propagation (semi-supervised mode) in a multi-observation framework. The facial features are extracted using an appearance-based 3D face tracker, viewand texture independent. Our method has been extensively tested on the CMU dataset, and has been conveniently compared with other methods for graph construction. With the proposed approach, we developed an application for an AIBO robot, in which it mirrors the recognized facial
expression.
Address
Corporate Author Thesis
Publisher Nova Science publishers Place of Publication Editor Bruce Flores
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes LAMP; Approved no
Call Number Admin @ si @ DRB2015 Serial 2720
Permanent link to this record
 

 
Author Juan Ramon Terven Salinas; Bogdan Raducanu; Maria Elena Meza-de-Luna; Joaquin Salas
Title Evaluating Real-Time Mirroring of Head Gestures using Smart Glasses Type Conference Article
Year 2015 Publication 16th IEEE International Conference on Computer Vision Workshops Abbreviated Journal
Volume Issue Pages 452-460
Keywords (up)
Abstract Mirroring occurs when one person tends to mimic the non-verbal communication of their counterparts. Even though mirroring is a complex phenomenon, in this study, we focus on the detection of head-nodding as a simple non-verbal communication cue due to its significance as a gesture displayed during social interactions. This paper introduces a computer vision-based method to detect mirroring through the analysis of head gestures using wearable cameras (smart glasses). In addition, we study how such a method can be used to explore perceived competence. The proposed method has been evaluated and the experiments demonstrate how static and wearable cameras seem to be equally effective to gather the information required for the analysis.
Address Santiago de Chile; December 2015
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICCVW
Notes LAMP; 600.068; 600.072; Approved no
Call Number Admin @ si @ TRM2015 Serial 2722
Permanent link to this record
 

 
Author Adriana Romero; Carlo Gatta; Gustavo Camps-Valls
Title Unsupervised Deep Feature Extraction for Remote Sensing Image Classification Type Journal Article
Year 2016 Publication IEEE Transaction on Geoscience and Remote Sensing Abbreviated Journal TGRS
Volume 54 Issue 3 Pages 1349 - 1362
Keywords (up)
Abstract This paper introduces the use of single-layer and deep convolutional networks for remote sensing data analysis. Direct application to multi- and hyperspectral imagery of supervised (shallow or deep) convolutional networks is very challenging given the high input data dimensionality and the relatively small amount of available labeled data. Therefore, we propose the use of greedy layerwise unsupervised pretraining coupled with a highly efficient algorithm for unsupervised learning of sparse features. The algorithm is rooted on sparse representations and enforces both population and lifetime sparsity of the extracted features, simultaneously. We successfully illustrate the expressive power of the extracted representations in several scenarios: classification of aerial scenes, as well as land-use classification in very high resolution or land-cover classification from multi- and hyperspectral images. The proposed algorithm clearly outperforms standard principal component analysis (PCA) and its kernel counterpart (kPCA), as well as current state-of-the-art algorithms of aerial classification, while being extremely computationally efficient at learning representations of data. Results show that single-layer convolutional networks can extract powerful discriminative features only when the receptive field accounts for neighboring pixels and are preferred when the classification requires high resolution and detailed results. However, deep architectures significantly outperform single-layer variants, capturing increasing levels of abstraction and complexity throughout the feature hierarchy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0196-2892 ISBN Medium
Area Expedition Conference
Notes LAMP; 600.079;MILAB Approved no
Call Number Admin @ si @ RGC2016 Serial 2723
Permanent link to this record
 

 
Author M. Campos-Taberner; Adriana Romero; Carlo Gatta; Gustavo Camps-Valls
Title Shared feature representations of LiDAR and optical images: Trading sparsity for semantic discrimination Type Conference Article
Year 2015 Publication IEEE International Geoscience and Remote Sensing Symposium IGARSS2015 Abbreviated Journal
Volume Issue Pages 4169 - 4172
Keywords (up)
Abstract This paper studies the level of complementary information conveyed by extremely high resolution LiDAR and optical images. We pursue this goal following an indirect approach via unsupervised spatial-spectral feature extraction. We used a recently presented unsupervised convolutional neural network trained to enforce both population and lifetime spar-sity in the feature representation. We derived independent and joint feature representations, and analyzed the sparsity scores and the discriminative power. Interestingly, the obtained results revealed that the RGB+LiDAR representation is no longer sparse, and the derived basis functions merge color and elevation yielding a set of more expressive colored edge filters. The joint feature representation is also more discriminative when used for clustering and topological data visualization.
Address Milan; Italy; July 2015
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference IGARSS
Notes LAMP; 600.079;MILAB Approved no
Call Number Admin @ si @ CRG2015 Serial 2724
Permanent link to this record
 

 
Author R. Bertrand; Oriol Ramos Terrades; P. Gomez-Kramer; P. Franco; Jean-Marc Ogier
Title A Conditional Random Field model for font forgery detection Type Conference Article
Year 2015 Publication 13th International Conference on Document Analysis and Recognition ICDAR2015 Abbreviated Journal
Volume Issue Pages 576 - 580
Keywords (up)
Abstract Nowadays, document forgery is becoming a real issue. A large amount of documents that contain critical information as payment slips, invoices or contracts, are constantly subject to fraudster manipulation because of the lack of security regarding this kind of document. Previously, a system to detect fraudulent documents based on its intrinsic features has been presented. It was especially designed to retrieve copy-move forgery and imperfection due to fraudster manipulation. However, when a set of characters is not present in the original document, copy-move forgery is not feasible. Hence, the fraudster will use a text toolbox to add or modify information in the document by imitating the font or he will cut and paste characters from another document where the font properties are similar. This often results in font type errors. Thus, a clue to detect document forgery consists of finding characters, words or sentences in a document with font properties different from their surroundings. To this end, we present in this paper an automatic forgery detection method based on document font features. Using the Conditional Random Field a measurement of probability that a character belongs to a specific font is made by comparing the character font features to a knowledge database. Then, the character is classified as a genuine or a fake one by comparing its probability to belong to a certain font type with those of the neighboring characters.
Address Nancy; France; August 2015
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICDAR
Notes DAG; 600.077 Approved no
Call Number Admin @ si @ BRG2015 Serial 2725
Permanent link to this record
 

 
Author Lluis Pere de las Heras; Oriol Ramos Terrades; Josep Llados; David Fernandez; Cristina Cañero
Title Use case visual Bag-of-Words techniques for camera based identity document classification Type Conference Article
Year 2015 Publication 13th International Conference on Document Analysis and Recognition ICDAR2015 Abbreviated Journal
Volume Issue Pages 721 - 725
Keywords (up)
Abstract Nowadays, automatic identity document recognition, including passport and driving license recognition, is at the core of many applications within the administrative and service sectors, such as police, hospitality, car renting, etc. In former years, the document information was manually extracted whereas today this data is recognized automatically from images obtained by flat-bed scanners. Yet, since these scanners tend to be expensive and voluminous, companies in the sector have recently turned their attention to cheaper, small and yet computationally powerful scanners: the mobile devices. The document identity recognition from mobile images enclose several new difficulties w.r.t traditional scanned images, such as the loss of a controlled background, perspective, blurring, etc. In this paper we present a real application for identity document classification of images taken from mobile devices. This classification process is of extreme importance since a prior knowledge of the document type and origin strongly facilitates the subsequent information extraction. The proposed method is based on a traditional Bagof-Words in which we have taken into consideration several key aspects to enhance recognition rate. The method performance has been studied on three datasets containing more than 2000 images from 129 different document classes.
Address Nancy; France; August 2015
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICDAR
Notes DAG; 600.077; 600.061; Approved no
Call Number Admin @ si @ HRL2015a Serial 2726
Permanent link to this record
 

 
Author Lluis Pere de las Heras; Oriol Ramos Terrades; Josep Llados
Title Attributed Graph Grammar for floor plan analysis Type Conference Article
Year 2015 Publication 13th International Conference on Document Analysis and Recognition ICDAR2015 Abbreviated Journal
Volume Issue Pages 726 - 730
Keywords (up)
Abstract In this paper, we propose the use of an Attributed Graph Grammar as unique framework to model and recognize the structure of floor plans. This grammar represents a building as a hierarchical composition of structurally and semantically related elements, where common representations are learned stochastically from annotated data. Given an input image, the parsing consists on constructing that graph representation that better agrees with the probabilistic model defined by the grammar. The proposed method provides several advantages with respect to the traditional floor plan analysis techniques. It uses an unsupervised statistical approach for detecting walls that adapts to different graphical notations and relaxes strong structural assumptions such are straightness and orthogonality. Moreover, the independence between the knowledge model and the parsing implementation allows the method to learn automatically different building configurations and thus, to cope the existing variability. These advantages are clearly demonstrated by comparing it with the most recent floor plan interpretation techniques on 4 datasets of real floor plans with different notations.
Address Nancy; France; August 2015
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICDAR
Notes DAG; 600.077; 600.061 Approved no
Call Number Admin @ si @ HRL2015b Serial 2727
Permanent link to this record
 

 
Author Carlos David Martinez Hinarejos; Josep Llados; Alicia Fornes; Francisco Casacuberta; Lluis de Las Heras; Joan Mas; Moises Pastor; Oriol Ramos Terrades; Joan Andreu Sanchez; Enrique Vidal; Fernando Vilariño
Title Context, multimodality, and user collaboration in handwritten text processing: the CoMUN-HaT project Type Conference Article
Year 2016 Publication 3rd IberSPEECH Abbreviated Journal
Volume Issue Pages
Keywords (up)
Abstract Processing of handwritten documents is a task that is of wide interest for many
purposes, such as those related to preserve cultural heritage. Handwritten text recognition techniques have been successfully applied during the last decade to obtain transcriptions of handwritten documents, and keyword spotting techniques have been applied for searching specific terms in image collections of handwritten documents. However, results on transcription and indexing are far from perfect. In this framework, the use of new data sources arises as a new paradigm that will allow for a better transcription and indexing of handwritten documents. Three main different data sources could be considered: context of the document (style, writer, historical time, topics,. . . ), multimodal data (representations of the document in a different modality, such as the speech signal of the dictation of the text), and user feedback (corrections, amendments,. . . ). The CoMUN-HaT project aims at the integration of these different data sources into the transcription and indexing task for handwritten documents: the use of context derived from the analysis of the documents, how multimodality can aid the recognition process to obtain more accurate transcriptions (including transcription in a modern version of the language), and integration into a userin-the-loop assisted text transcription framework. This will be reflected in the construction of a transcription and indexing platform that can be used by both professional and nonprofessional users, contributing to crowd-sourcing activities to preserve cultural heritage and to obtain an accessible version of the involved corpus.
Address Lisboa; Portugal; November 2016
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference IberSPEECH
Notes DAG; MV; 600.097;SIAI Approved no
Call Number Admin @ si @MLF2016 Serial 2813
Permanent link to this record
 

 
Author Gloria Fernandez Esparrach; Jorge Bernal; Cristina Rodriguez de Miguel; Debora Gil; Fernando Vilariño; Henry Cordova; Cristina Sanchez Montes; I.Araujo ; Maria Lopez Ceron; J.Llach; F. Javier Sanchez
Title Colonic polyps are correctly identified by a computer vision method using wm-dova energy maps Type Conference Article
Year 2015 Publication Proceedings of 23 United European- UEG Week 2015 Abbreviated Journal
Volume Issue Pages
Keywords (up)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference UEG
Notes MV; IAM; 600.075;SIAI Approved no
Call Number Admin @ si @ FBR2015 Serial 2732
Permanent link to this record
 

 
Author Hanne Kause; Aura Hernandez-Sabate; Patricia Marquez; Andrea Fuster; Luc Florack; Hans van Assen; Debora Gil
Title Confidence Measures for Assessing the HARP Algorithm in Tagged Magnetic Resonance Imaging Type Book Chapter
Year 2015 Publication Statistical Atlases and Computational Models of the Heart. Revised selected papers of Imaging and Modelling Challenges 6th International Workshop, STACOM 2015, Held in Conjunction with MICCAI 2015 Abbreviated Journal
Volume 9534 Issue Pages 69-79
Keywords (up)
Abstract Cardiac deformation and changes therein have been linked to pathologies. Both can be extracted in detail from tagged Magnetic Resonance Imaging (tMRI) using harmonic phase (HARP) images. Although point tracking algorithms have shown to have high accuracies on HARP images, these vary with position. Detecting and discarding areas with unreliable results is crucial for use in clinical support systems. This paper assesses the capability of two confidence measures (CMs), based on energy and image structure, for detecting locations with reduced accuracy in motion tracking results. These CMs were tested on a database of simulated tMRI images containing the most common artifacts that may affect tracking accuracy. CM performance is assessed based on its capability for HARP tracking error bounding and compared in terms of significant differences detected using a multi comparison analysis of variance that takes into account the most influential factors on HARP tracking performance. Results showed that the CM based on image structure was better suited to detect unreliable optical flow vectors. In addition, it was shown that CMs can be used to detect optical flow vectors with large errors in order to improve the optical flow obtained with the HARP tracking algorithm.
Address Munich; Germany; January 2015
Corporate Author Thesis
Publisher Springer International Publishing Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN 0302-9743 ISBN 978-3-319-28711-9 Medium
Area Expedition Conference STACOM
Notes ADAS; IAM; 600.075; 600.076; 600.060; 601.145 Approved no
Call Number Admin @ si @ KHM2015 Serial 2734
Permanent link to this record
 

 
Author Maedeh Aghaei; Mariella Dimiccoli; Petia Radeva
Title Multi-face tracking by extended bag-of-tracklets in egocentric photo-streams Type Journal Article
Year 2016 Publication Computer Vision and Image Understanding Abbreviated Journal CVIU
Volume 149 Issue Pages 146-156
Keywords (up)
Abstract Wearable cameras offer a hands-free way to record egocentric images of daily experiences, where social events are of special interest. The first step towards detection of social events is to track the appearance of multiple persons involved in them. In this paper, we propose a novel method to find correspondences of multiple faces in low temporal resolution egocentric videos acquired through a wearable camera. This kind of photo-stream imposes additional challenges to the multi-tracking problem with respect to conventional videos. Due to the free motion of the camera and to its low temporal resolution, abrupt changes in the field of view, in illumination condition and in the target location are highly frequent. To overcome such difficulties, we propose a multi-face tracking method that generates a set of tracklets through finding correspondences along the whole sequence for each detected face and takes advantage of the tracklets redundancy to deal with unreliable ones. Similar tracklets are grouped into the so called extended bag-of-tracklets (eBoT), which is aimed to correspond to a specific person. Finally, a prototype tracklet is extracted for each eBoT, where the occurred occlusions are estimated by relying on a new measure of confidence. We validated our approach over an extensive dataset of egocentric photo-streams and compared it to state of the art methods, demonstrating its effectiveness and robustness.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MILAB; Approved no
Call Number Admin @ si @ ADR2016b Serial 2742
Permanent link to this record
 

 
Author Onur Ferhat; Fernando Vilariño
Title Low Cost Eye Tracking: The Current Panorama Type Journal Article
Year 2016 Publication Computational Intelligence and Neuroscience Abbreviated Journal CIN
Volume Issue Pages Article ID 8680541
Keywords (up)
Abstract Despite the availability of accurate, commercial gaze tracker devices working with infrared (IR) technology, visible light gaze tracking constitutes an interesting alternative by allowing scalability and removing hardware requirements. Over the last years, this field has seen examples of research showing performance comparable to the IR alternatives. In this work, we survey the previous work on remote, visible light gaze trackers and analyze the explored techniques from various perspectives such as calibration strategies, head pose invariance, and gaze estimation techniques. We also provide information on related aspects of research such as public datasets to test against, open source projects to build upon, and gaze tracking services to directly use in applications. With all this information, we aim to provide the contemporary and future researchers with a map detailing previously explored ideas and the required tools.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MV; 605.103; 600.047; 600.097;SIAI Approved no
Call Number Admin @ si @ FeV2016 Serial 2744
Permanent link to this record
 

 
Author C. Alejandro Parraga; Arash Akbarinia
Title NICE: A Computational Solution to Close the Gap from Colour Perception to Colour Categorization Type Journal Article
Year 2016 Publication PLoS One Abbreviated Journal Plos
Volume 11 Issue 3 Pages e0149538
Keywords (up)
Abstract The segmentation of visible electromagnetic radiation into chromatic categories by the human visual system has been extensively studied from a perceptual point of view, resulting in several colour appearance models. However, there is currently a void when it comes to relate these results to the physiological mechanisms that are known to shape the pre-cortical and cortical visual pathway. This work intends to begin to fill this void by proposing a new physiologically plausible model of colour categorization based on Neural Isoresponsive Colour Ellipsoids (NICE) in the cone-contrast space defined by the main directions of the visual signals entering the visual cortex. The model was adjusted to fit psychophysical measures that concentrate on the categorical boundaries and are consistent with the ellipsoidal isoresponse surfaces of visual cortical neurons. By revealing the shape of such categorical colour regions, our measures allow for a more precise and parsimonious description, connecting well-known early visual processing mechanisms to the less understood phenomenon of colour categorization. To test the feasibility of our method we applied it to exemplary images and a popular ground-truth chart obtaining labelling results that are better than those of current state-of-the-art algorithms.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes NEUROBIT; 600.068 Approved no
Call Number Admin @ si @ PaA2016a Serial 2747
Permanent link to this record
 

 
Author Joan Mas; Alicia Fornes; Josep Llados
Title An Interactive Transcription System of Census Records using Word-Spotting based Information Transfer Type Conference Article
Year 2016 Publication 12th IAPR Workshop on Document Analysis Systems Abbreviated Journal
Volume Issue Pages 54-59
Keywords (up)
Abstract This paper presents a system to assist in the transcription of historical handwritten census records in a crowdsourcing platform. Census records have a tabular structured layout. They consist in a sequence of rows with information of homes ordered by street address. For each household snippet in the page, the list of family members is reported. The censuses are recorded in intervals of a few years and the information of individuals in each household is quite stable from a point in time to the next one. This redundancy is used to assist the transcriber, so the redundant information is transferred from the census already transcribed to the next one. Household records are aligned from one year to the next one using the knowledge of the ordering by street address. Given an already transcribed census, a query by string word spotting is applied. Thus, names from the census in time t are used as queries in the corresponding home record in time t+1. Since the search is constrained, the obtained precision-recall values are very high, with an important reduction in the transcription time. The proposed system has been tested in a real citizen-science experience where non expert users transcribe the census data of their home town.
Address Santorini; Greece; April 2016
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference DAS
Notes DAG; 603.053; 602.006; 600.061; 600.077; 600.097 Approved no
Call Number Admin @ si @ MFL2016 Serial 2751
Permanent link to this record