|
Arjan Gijsenij, Theo Gevers, & Joost Van de Weijer. (2012). Improving Color Constancy by Photometric Edge Weighting. TPAMI - IEEE Transaction on Pattern Analysis and Machine Intelligence, 34(5), 918–929.
Abstract: : Edge-based color constancy methods make use of image derivatives to estimate the illuminant. However, different edge types exist in real-world images such as material, shadow and highlight edges. These different edge types may have a distinctive influence on the performance of the illuminant estimation. Therefore, in this paper, an extensive analysis is provided of different edge types on the performance of edge-based color constancy methods. First, an edge-based taxonomy is presented classifying edge types based on their photometric properties (e.g. material, shadow-geometry and highlights). Then, a performance evaluation of edge-based color constancy is provided using these different edge types. From this performance evaluation it is derived that specular and shadow edge types are more valuable than material edges for the estimation of the illuminant. To this end, the (iterative) weighted Grey-Edge algorithm is proposed in which these edge types are more emphasized for the estimation of the illuminant. Images that are recorded under controlled circumstances demonstrate that the proposed iterative weighted Grey-Edge algorithm based on highlights reduces the median angular error with approximately $25\%$. In an uncontrolled environment, improvements in angular error up to $11\%$ are obtained with respect to regular edge-based color constancy.
|
|
|
Olivier Penacchio, Xavier Otazu, & Laura Dempere-Marco. (2013). A Neurodynamical Model of Brightness Induction in V1. Plos - PloS ONE, 8(5), e64086.
Abstract: Brightness induction is the modulation of the perceived intensity of an area by the luminance of surrounding areas. Recent neurophysiological evidence suggests that brightness information might be explicitly represented in V1, in contrast to the more common assumption that the striate cortex is an area mostly responsive to sensory information. Here we investigate possible neural mechanisms that offer a plausible explanation for such phenomenon. To this end, a neurodynamical model which is based on neurophysiological evidence and focuses on the part of V1 responsible for contextual influences is presented. The proposed computational model successfully accounts for well known psychophysical effects for static contexts and also for brightness induction in dynamic contexts defined by modulating the luminance of surrounding areas. This work suggests that intra-cortical interactions in V1 could, at least partially, explain brightness induction effects and reveals how a common general architecture may account for several different fundamental processes, such as visual saliency and brightness induction, which emerge early in the visual processing pathway.
|
|
|
C. Alejandro Parraga, Jordi Roca, Dimosthenis Karatzas, & Sophie Wuerger. (2014). Limitations of visual gamma corrections in LCD displays. Dis - Displays, 35(5), 227–239.
Abstract: A method for estimating the non-linear gamma transfer function of liquid–crystal displays (LCDs) without the need of a photometric measurement device was described by Xiao et al. (2011) [1]. It relies on observer’s judgments of visual luminance by presenting eight half-tone patterns with luminances from 1/9 to 8/9 of the maximum value of each colour channel. These half-tone patterns were distributed over the screen both over the vertical and horizontal viewing axes. We conducted a series of photometric and psychophysical measurements (consisting in the simultaneous presentation of half-tone patterns in each trial) to evaluate whether the angular dependency of the light generated by three different LCD technologies would bias the results of these gamma transfer function estimations. Our results show that there are significant differences between the gamma transfer functions measured and produced by observers at different viewing angles. We suggest appropriate modifications to the Xiao et al. paradigm to counterbalance these artefacts which also have the advantage of shortening the amount of time spent in collecting the psychophysical measurements.
Keywords: Display calibration; Psychophysics; Perceptual; Visual gamma correction; Luminance matching; Observer-based calibration
|
|
|
Ivet Rafegas, Javier Vazquez, Robert Benavente, Maria Vanrell, & Susana Alvarez. (2017). Enhancing spatio-chromatic representation with more-than-three color coding for image description. JOSA A - Journal of the Optical Society of America A, 34(5), 827–837.
Abstract: Extraction of spatio-chromatic features from color images is usually performed independently on each color channel. Usual 3D color spaces, such as RGB, present a high inter-channel correlation for natural images. This correlation can be reduced using color-opponent representations, but the spatial structure of regions with small color differences is not fully captured in two generic Red-Green and Blue-Yellow channels. To overcome these problems, we propose a new color coding that is adapted to the specific content of each image. Our proposal is based on two steps: (a) setting the number of channels to the number of distinctive colors we find in each image (avoiding the problem of channel correlation), and (b) building a channel representation that maximizes contrast differences within each color channel (avoiding the problem of low local contrast). We call this approach more-than-three color coding (MTT) to enhance the fact that the number of channels is adapted to the image content. The higher color complexity an image has, the more channels can be used to represent it. Here we select distinctive colors as the most predominant in the image, which we call color pivots, and we build the new color coding using these color pivots as a basis. To evaluate the proposed approach we measure its efficiency in an image categorization task. We show how a generic descriptor improves its performance at the description level when applied on the MTT coding.
|
|
|
Jordi Roca, C. Alejandro Parraga, & Maria Vanrell. (2013). Chromatic settings and the structural color constancy index. JV - Journal of Vision, 13(4-3), 1–26.
Abstract: Color constancy is usually measured by achromatic setting, asymmetric matching, or color naming paradigms, whose results are interpreted in terms of indexes and models that arguably do not capture the full complexity of the phenomenon. Here we propose a new paradigm, chromatic setting, which allows a more comprehensive characterization of color constancy through the measurement of multiple points in color space under immersive adaptation. We demonstrated its feasibility by assessing the consistency of subjects' responses over time. The paradigm was applied to two-dimensional (2-D) Mondrian stimuli under three different illuminants, and the results were used to fit a set of linear color constancy models. The use of multiple colors improved the precision of more complex linear models compared to the popular diagonal model computed from gray. Our results show that a diagonal plus translation matrix that models mechanisms other than cone gain might be best suited to explain the phenomenon. Additionally, we calculated a number of color constancy indices for several points in color space, and our results suggest that interrelations among colors are not as uniform as previously believed. To account for this variability, we developed a new structural color constancy index that takes into account the magnitude and orientation of the chromatic shift in addition to the interrelations among colors and memory effects.
|
|
|
Daniel Ponsa, Robert Benavente, Felipe Lumbreras, Judit Martinez, & Xavier Roca. (2003). Quality control of safety belts by machine vision inspection for real-time production. Optical Engineering (IF: 0.877), 42(4), 1114–1120.
|
|
|
Alicia Fornes, Josep Llados, Gemma Sanchez, Xavier Otazu, & Horst Bunke. (2010). A Combination of Features for Symbol-Independent Writer Identification in Old Music Scores. IJDAR - International Journal on Document Analysis and Recognition, 13(4), 243–259.
Abstract: The aim of writer identification is determining the writer of a piece of handwriting from a set of writers. In this paper, we present an architecture for writer identification in old handwritten music scores. Even though an important amount of music compositions contain handwritten text, the aim of our work is to use only music notation to determine the author. The main contribution is therefore the use of features extracted from graphical alphabets. Our proposal consists in combining the identification results of two different approaches, based on line and textural features. The steps of the ensemble architecture are the following. First of all, the music sheet is preprocessed for removing the staff lines. Then, music lines and texture images are generated for computing line features and textural features. Finally, the classification results are combined for identifying the writer. The proposed method has been tested on a database of old music scores from the seventeenth to nineteenth centuries, achieving a recognition rate of about 92% with 20 writers.
|
|
|
Olivier Penacchio. (2011). Mixed Hodge Structures and Equivariant Sheaves on the Projective Plane. MN - Mathematische Nachrichten, 284(4), 526–542.
Abstract: We describe an equivalence of categories between the category of mixed Hodge structures and a category of equivariant vector bundles on a toric model of the complex projective plane which verify some semistability condition. We then apply this correspondence to define an invariant which generalizes the notion of R-split mixed Hodge structure and give calculations for the first group of cohomology of possibly non smooth or non-complete curves of genus 0 and 1. Finally, we describe some extension groups of mixed Hodge structures in terms of equivariant extensions of coherent sheaves. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Keywords: Mixed Hodge structures, equivariant sheaves, MSC (2010) Primary: 14C30, Secondary: 14F05, 14M25
|
|
|
Noha Elfiky, Fahad Shahbaz Khan, Joost Van de Weijer, & Jordi Gonzalez. (2012). Discriminative Compact Pyramids for Object and Scene Recognition. PR - Pattern Recognition, 45(4), 1627–1636.
Abstract: Spatial pyramids have been successfully applied to incorporating spatial information into bag-of-words based image representation. However, a major drawback is that it leads to high dimensional image representations. In this paper, we present a novel framework for obtaining compact pyramid representation. First, we investigate the usage of the divisive information theoretic feature clustering (DITC) algorithm in creating a compact pyramid representation. In many cases this method allows us to reduce the size of a high dimensional pyramid representation up to an order of magnitude with little or no loss in accuracy. Furthermore, comparison to clustering based on agglomerative information bottleneck (AIB) shows that our method obtains superior results at significantly lower computational costs. Moreover, we investigate the optimal combination of multiple features in the context of our compact pyramid representation. Finally, experiments show that the method can obtain state-of-the-art results on several challenging data sets.
|
|
|
Javier Vazquez, Maria Vanrell, Ramon Baldrich, & Francesc Tous. (2012). Color Constancy by Category Correlation. TIP - IEEE Transactions on Image Processing, 21(4), 1997–2007.
Abstract: Finding color representations which are stable to illuminant changes is still an open problem in computer vision. Until now most approaches have been based on physical constraints or statistical assumptions derived from the scene, while very little attention has been paid to the effects that selected illuminants have
on the final color image representation. The novelty of this work is to propose
perceptual constraints that are computed on the corrected images. We define the
category hypothesis, which weights the set of feasible illuminants according to their ability to map the corrected image onto specific colors. Here we choose these colors as the universal color categories related to basic linguistic terms which have been psychophysically measured. These color categories encode natural color statistics, and their relevance across different cultures is indicated by the fact that they have received a common color name. From this category hypothesis we propose a fast implementation that allows the sampling of a large set of illuminants. Experiments prove that our method rivals current state-of-art performance without the need for training algorithmic parameters. Additionally, the method can be used as a framework to insert top-down information from other sources, thus opening further research directions in solving for color constancy.
|
|
|
Xim Cerda-Company, C. Alejandro Parraga, & Xavier Otazu. (2018). Which tone-mapping operator is the best? A comparative study of perceptual quality. JOSA A - Journal of the Optical Society of America A, 35(4), 626–638.
Abstract: Tone-mapping operators (TMO) are designed to generate perceptually similar low-dynamic range images from high-dynamic range ones. We studied the performance of fifteen TMOs in two psychophysical experiments where observers compared the digitally-generated tone-mapped images to their corresponding physical scenes. All experiments were performed in a controlled environment and the setups were
designed to emphasize different image properties: in the first experiment we evaluated the local relationships among intensity-levels, and in the second one we evaluated global visual appearance among physical scenes and tone-mapped images, which were presented side by side. We ranked the TMOs according
to how well they reproduced the results obtained in the physical scene. Our results show that ranking position clearly depends on the adopted evaluation criteria, which implies that, in general, these tone-mapping algorithms consider either local or global image attributes but rarely both. Regarding the
question of which TMO is the best, KimKautz [1] and Krawczyk [2] obtained the better results across the different experiments. We conclude that a more thorough and standardized evaluation criteria is needed to study all the characteristics of TMOs, as there is ample room for improvement in future developments.
|
|
|
Lichao Zhang, Abel Gonzalez-Garcia, Joost Van de Weijer, Martin Danelljan, & Fahad Shahbaz Khan. (2019). Synthetic Data Generation for End-to-End Thermal Infrared Tracking. TIP - IEEE Transactions on Image Processing, 28(4), 1837–1850.
Abstract: The usage of both off-the-shelf and end-to-end trained deep networks have significantly improved the performance of visual tracking on RGB videos. However, the lack of large labeled datasets hampers the usage of convolutional neural networks for tracking in thermal infrared (TIR) images. Therefore, most state-of-the-art methods on tracking for TIR data are still based on handcrafted features. To address this problem, we propose to use image-to-image translation models. These models allow us to translate the abundantly available labeled RGB data to synthetic TIR data. We explore both the usage of paired and unpaired image translation models for this purpose. These methods provide us with a large labeled dataset of synthetic TIR sequences, on which we can train end-to-end optimal features for tracking. To the best of our knowledge, we are the first to train end-to-end features for TIR tracking. We perform extensive experiments on the VOT-TIR2017 dataset. We show that a network trained on a large dataset of synthetic TIR data obtains better performance than one trained on the available real TIR data. Combining both data sources leads to further improvement. In addition, when we combine the network with motion features, we outperform the state of the art with a relative gain of over 10%, clearly showing the efficiency of using synthetic data to train end-to-end TIR trackers.
|
|
|
Aymen Azaza, Joost Van de Weijer, Ali Douik, Javad Zolfaghari Bengar, & Marc Masana. (2020). Saliency from High-Level Semantic Image Features. SN - SN Computer Science, 1–12.
Abstract: Top-down semantic information is known to play an important role in assigning saliency. Recently, large strides have been made in improving state-of-the-art semantic image understanding in the fields of object detection and semantic segmentation. Therefore, since these methods have now reached a high-level of maturity, evaluation of the impact of high-level image understanding on saliency estimation is now feasible. We propose several saliency features which are computed from object detection and semantic segmentation results. We combine these features with a standard baseline method for saliency detection to evaluate their importance. Experiments demonstrate that the proposed features derived from object detection and semantic segmentation improve saliency estimation significantly. Moreover, they show that our method obtains state-of-the-art results on (FT, ImgSal, and SOD datasets) and obtains competitive results on four other datasets (ECSSD, PASCAL-S, MSRA-B, and HKU-IS).
|
|
|
Yasuko Sugito, Trevor Canham, Javier Vazquez, & Marcelo Bertalmio. (2021). A Study of Objective Quality Metrics for HLG-Based HDR/WCG Image Coding. SMPTE - SMPTE Motion Imaging Journal, 53–65.
Abstract: In this work, we study the suitability of high dynamic range, wide color gamut (HDR/WCG) objective quality metrics to assess the perceived deterioration of compressed images encoded using the hybrid log-gamma (HLG) method, which is the standard for HDR television. Several image quality metrics have been developed to deal specifically with HDR content, although in previous work we showed that the best results (i.e., better matches to the opinion of human expert observers) are obtained by an HDR metric that consists simply in applying a given standard dynamic range metric, called visual information fidelity (VIF), directly to HLG-encoded images. However, all these HDR metrics ignore the chroma components for their calculations, that is, they consider only the luminance channel. For this reason, in the current work, we conduct subjective evaluation experiments in a professional setting using compressed HDR/WCG images encoded with HLG and analyze the ability of the best HDR metric to detect perceivable distortions in the chroma components, as well as the suitability of popular color metrics (including ΔITPR , which supports parameters for HLG) to correlate with the opinion scores. Our first contribution is to show that there is a need to consider the chroma components in HDR metrics, as there are color distortions that subjects perceive but that the best HDR metric fails to detect. Our second contribution is the surprising result that VIF, which utilizes only the luminance channel, correlates much better with the subjective evaluation scores than the metrics investigated that do consider the color components.
|
|
|
Javier Vazquez, Graham D. Finlayson, & Luis Herranz. (2024). Improving the perception of low-light enhanced images. Optics Express, 32(4), 5174–5190.
Abstract: Improving images captured under low-light conditions has become an important topic in computational color imaging, as it has a wide range of applications. Most current methods are either based on handcrafted features or on end-to-end training of deep neural networks that mostly focus on minimizing some distortion metric —such as PSNR or SSIM— on a set of training images. However, the minimization of distortion metrics does not mean that the results are optimal in terms of perception (i.e. perceptual quality). As an example, the perception-distortion trade-off states that, close to the optimal results, improving distortion results in worsening perception. This means that current low-light image enhancement methods —that focus on distortion minimization— cannot be optimal in the sense of obtaining a good image in terms of perception errors. In this paper, we propose a post-processing approach in which, given the original low-light image and the result of a specific method, we are able to obtain a result that resembles as much as possible that of the original method, but, at the same time, giving an improvement in the perception of the final image. More in detail, our method follows the hypothesis that in order to minimally modify the perception of an input image, any modification should be a combination of a local change in the shading across a scene and a global change in illumination color. We demonstrate the ability of our method quantitatively using perceptual blind image metrics such as BRISQUE, NIQE, or UNIQUE, and through user preference tests.
|
|
|
C. Alejandro Parraga, Robert Benavente, Maria Vanrell, & Ramon Baldrich. (2009). Psychophysical measurements to model inter-colour regions of colour-naming space. Journal of Imaging Science and Technology, 53(3), 031106 (8 pages).
Abstract: JCR Impact Factor 2009: 0.391
In this paper, we present a fuzzy-set of parametric functions which segment the CIE lab space into eleven regions which correspond to the group of common universal categories present in all evolved languages as identified by anthropologists and linguists. The set of functions is intended to model a color-name assignment task by humans and differs from other models in its emphasis on the inter-color boundary regions, which were explicitly measured by means of a psychophysics experiment. In our particular implementation, the CIE lab space was segmented into eleven color categories using a Triple Sigmoid as the fuzzy sets basis, whose parameters are included in this paper. The model’s parameters were adjusted according to the psychophysical results of a yes/no discrimination paradigm where observers had to choose (English) names for isoluminant colors belonging to regions in-between neighboring categories. These colors were presented on a calibrated CRT monitor (14-bit x 3 precision). The experimental results show that inter- color boundary regions are much less defined than expected and color samples other than those near the most representatives are needed to define the position and shape of boundaries between categories. The extended set of model parameters is given as a table.
Keywords: image processing; Analysis
|
|
|
Javier Vazquez, C. Alejandro Parraga, Maria Vanrell, & Ramon Baldrich. (2009). Color Constancy Algorithms: Psychophysical Evaluation on a New Dataset. Journal of Imaging Science and Technology, 53(3), 031105–9.
Abstract: The estimation of the illuminant of a scene from a digital image has been the goal of a large amount of research in computer vision. Color constancy algorithms have dealt with this problem by defining different heuristics to select a unique solution from within the feasible set. The performance of these algorithms has shown that there is still a long way to go to globally solve this problem as a preliminary step in computer vision. In general, performance evaluation has been done by comparing the angular error between the estimated chromaticity and the chromaticity of a canonical illuminant, which is highly dependent on the image dataset. Recently, some workers have used high-level constraints to estimate illuminants; in this case selection is based on increasing the performance on the subsequent steps of the systems. In this paper we propose a new performance measure, the perceptual angular error. It evaluates the performance of a color constancy algorithm according to the perceptual preferences of humans, or naturalness (instead of the actual optimal solution) and is independent of the visual task. We show the results of a new psychophysical experiment comparing solutions from three different color constancy algorithms. Our results show that in more than a half of the judgments the preferred solution is not the one closest to the optimal solution. Our experiments were performed on a new dataset of images acquired with a calibrated camera with an attached neutral grey sphere, which better copes with the illuminant variations of the scene.
|
|
|
Eduard Vazquez, Theo Gevers, M. Lucassen, Joost Van de Weijer, & Ramon Baldrich. (2010). Saliency of Color Image Derivatives: A Comparison between Computational Models and Human Perception. JOSA A - Journal of the Optical Society of America A, 27(3), 613–621.
Abstract: In this paper, computational methods are proposed to compute color edge saliency based on the information content of color edges. The computational methods are evaluated on bottom-up saliency in a psychophysical experiment, and on a more complex task of salient object detection in real-world images. The psychophysical experiment demonstrates the relevance of using information theory as a saliency processing model and that the proposed methods are significantly better in predicting color saliency (with a human-method correspondence up to 74.75% and an observer agreement of 86.8%) than state-of-the-art models. Furthermore, results from salient object detection confirm that an early fusion of color and contrast provide accurate performance to compute visual saliency with a hit rate up to 95.2%.
|
|