toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Koen E.A. van de Sande; Theo Gevers; C.G.M. Snoek edit  doi
openurl 
  Title Evaluating Color Descriptors for Object and Scene Recognition Type Journal Article
  Year 2010 Publication IEEE Transaction on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 32 Issue (up) 9 Pages 1582 - 1596  
  Keywords  
  Abstract Impact factor: 5.308
Image category recognition is important to access visual information on the level of objects and scene types. So far, intensity-based descriptors have been widely used for feature extraction at salient points. To increase illumination invariance and discriminative power, color descriptors have been proposed. Because many different descriptors exist, a structured overview is required of color invariant descriptors in the context of image category recognition. Therefore, this paper studies the invariance properties and the distinctiveness of color descriptors (software to compute the color descriptors from this paper is available from http://www.colordescriptors.com) in a structured way. The analytical invariance properties of color descriptors are explored, using a taxonomy based on invariance properties with respect to photometric transformations, and tested experimentally using a data set with known illumination conditions. In addition, the distinctiveness of color descriptors is assessed experimentally using two benchmarks, one from the image domain and one from the video domain. From the theoretical and experimental results, it can be derived that invariance to light intensity changes and light color changes affects category recognition. The results further reveal that, for light intensity shifts, the usefulness of invariance is category-specific. Overall, when choosing a single descriptor and no prior knowledge about the data set and object and scene categories is available, the OpponentSIFT is recommended. Furthermore, a combined set of color descriptors outperforms intensity-based SIFT and improves category recognition by 8 percent on the PASCAL VOC 2007 and by 7 percent on the Mediamill Challenge.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0162-8828 ISBN Medium  
  Area Expedition Conference  
  Notes ALTRES;ISE Approved no  
  Call Number Admin @ si @ SGS2010 Serial 1846  
Permanent link to this record
 

 
Author Mirko Arnold; Anarta Ghosh; Stephen Ameling; G Lacey edit  doi
openurl 
  Title Automatic segmentation and inpainting of specular highlights for endoscopic imaging Type Journal Article
  Year 2010 Publication EURASIP Journal on Image and Video Processing Abbreviated Journal EURASIP JIVP  
  Volume 2010 Issue (up) 9 Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area 800 Expedition Conference  
  Notes MV Approved no  
  Call Number fernando @ fernando @ Serial 2423  
Permanent link to this record
 

 
Author Cesar Isaza; Joaquin Salas; Bogdan Raducanu edit  doi
isbn  openurl
  Title Toward the Detection of Urban Infrastructures Edge Shadows Type Conference Article
  Year 2010 Publication 12th International Conference on Advanced Concepts for Intelligent Vision Systems Abbreviated Journal  
  Volume 6474 Issue (up) I Pages 30–37  
  Keywords  
  Abstract In this paper, we propose a novel technique to detect the shadows cast by urban infrastructure, such as buildings, billboards, and traffic signs, using a sequence of images taken from a fixed camera. In our approach, we compute two different background models in parallel: one for the edges and one for the reflected light intensity. An algorithm is proposed to train the system to distinguish between moving edges in general and edges that belong to static objects, creating an edge background model. Then, during operation, a background intensity model allow us to separate between moving and static objects. Those edges included in the moving objects and those that belong to the edge background model are subtracted from the current image edges. The remaining edges are the ones cast by urban infrastructure. Our method is tested on a typical crossroad scene and the results show that the approach is sound and promising.  
  Address Sydney, Australia  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor eds. Blanc–Talon et al  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-17687-6 Medium  
  Area Expedition Conference ACIVS  
  Notes OR;MV Approved no  
  Call Number BCNPCL @ bcnpcl @ ISR2010 Serial 1458  
Permanent link to this record
 

 
Author Marco Pedersoli; Jordi Gonzalez; Andrew Bagdanov; Juan J. Villanueva edit  doi
isbn  openurl
  Title Recursive Coarse-to-Fine Localization for fast Object Recognition Type Conference Article
  Year 2010 Publication 11th European Conference on Computer Vision Abbreviated Journal  
  Volume 6313 Issue (up) II Pages 280–293  
  Keywords  
  Abstract Cascading techniques are commonly used to speed-up the scan of an image for object detection. However, cascades of detectors are slow to train due to the high number of detectors and corresponding thresholds to learn. Furthermore, they do not use any prior knowledge about the scene structure to decide where to focus the search. To handle these problems, we propose a new way to scan an image, where we couple a recursive coarse-to-fine refinement together with spatial constraints of the object location. For doing that we split an image into a set of uniformly distributed neighborhood regions, and for each of these we apply a local greedy search over feature resolutions. The neighborhood is defined as a scanning region that only one object can occupy. Therefore the best hypothesis is obtained as the location with maximum score and no thresholds are needed. We present an implementation of our method using a pyramid of HOG features and we evaluate it on two standard databases, VOC2007 and INRIA dataset. Results show that the Recursive Coarse-to-Fine Localization (RCFL) achieves a 12x speed-up compared to standard sliding windows. Compared with a cascade of multiple resolutions approach our method has slightly better performance in speed and Average-Precision. Furthermore, in contrast to cascading approach, the speed-up is independent of image conditions, the number of detected objects and clutter.  
  Address Crete (Greece)  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-15566-6 Medium  
  Area Expedition Conference ECCV  
  Notes ISE Approved no  
  Call Number DAG @ dag @ PGB2010 Serial 1438  
Permanent link to this record
 

 
Author Carles Fernandez; Jordi Gonzalez; Xavier Roca edit  doi
isbn  openurl
  Title Automatic Learning of Background Semantics in Generic Surveilled Scenes Type Conference Article
  Year 2010 Publication 11th European Conference on Computer Vision Abbreviated Journal  
  Volume 6313 Issue (up) II Pages 678–692  
  Keywords  
  Abstract Advanced surveillance systems for behavior recognition in outdoor traffic scenes depend strongly on the particular configuration of the scenario. Scene-independent trajectory analysis techniques statistically infer semantics in locations where motion occurs, and such inferences are typically limited to abnormality. Thus, it is interesting to design contributions that automatically categorize more specific semantic regions. State-of-the-art approaches for unsupervised scene labeling exploit trajectory data to segment areas like sources, sinks, or waiting zones. Our method, in addition, incorporates scene-independent knowledge to assign more meaningful labels like crosswalks, sidewalks, or parking spaces. First, a spatiotemporal scene model is obtained from trajectory analysis. Subsequently, a so-called GI-MRF inference process reinforces spatial coherence, and incorporates taxonomy-guided smoothness constraints. Our method achieves automatic and effective labeling of conceptual regions in urban scenarios, and is robust to tracking errors. Experimental validation on 5 surveillance databases has been conducted to assess the generality and accuracy of the segmentations. The resulting scene models are used for model-based behavior analysis.  
  Address Crete (Greece)  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-15551-2 Medium  
  Area Expedition Conference ECCV  
  Notes ISE Approved no  
  Call Number ISE @ ise @ FGR2010 Serial 1439  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: