|   | 
Details
   web
Records
Author Alejandro Gonzalez Alzate; Zhijie Fang; Yainuvis Socarras; Joan Serrat; David Vazquez; Jiaolong Xu; Antonio Lopez
Title Pedestrian Detection at Day/Night Time with Visible and FIR Cameras: A Comparison Type Journal Article
Year 2016 Publication Sensors Abbreviated Journal SENS
Volume 16 Issue (down) 6 Pages 820
Keywords Pedestrian Detection; FIR
Abstract Despite all the significant advances in pedestrian detection brought by computer vision for driving assistance, it is still a challenging problem. One reason is the extremely varying lighting conditions under which such a detector should operate, namely day and night time. Recent research has shown that the combination of visible and non-visible imaging modalities may increase detection accuracy, where the infrared spectrum plays a critical role. The goal of this paper is to assess the accuracy gain of different pedestrian models (holistic, part-based, patch-based) when training with images in the far infrared spectrum. Specifically, we want to compare detection accuracy on test images recorded at day and nighttime if trained (and tested) using (a) plain color images, (b) just infrared images and (c) both of them. In order to obtain results for the last item we propose an early fusion approach to combine features from both modalities. We base the evaluation on a new dataset we have built for this purpose as well as on the publicly available KAIST multispectral dataset.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1424-8220 ISBN Medium
Area Expedition Conference
Notes ADAS; 600.085; 600.076; 600.082; 601.281 Approved no
Call Number ADAS @ adas @ GFS2016 Serial 2754
Permanent link to this record
 

 
Author Angel Sappa; P. Carvajal; Cristhian A. Aguilera-Carrasco; Miguel Oliveira; Dennis Romero; Boris X. Vintimilla
Title Wavelet based visible and infrared image fusion: a comparative study Type Journal Article
Year 2016 Publication Sensors Abbreviated Journal SENS
Volume 16 Issue (down) 6 Pages 1-15
Keywords Image fusion; fusion evaluation metrics; visible and infrared imaging; discrete wavelet transform
Abstract This paper evaluates different wavelet-based cross-spectral image fusion strategies adopted to merge visible and infrared images. The objective is to find the best setup independently of the evaluation metric used to measure the performance. Quantitative performance results are obtained with state of the art approaches together with adaptations proposed in the current work. The options evaluated in the current work result from the combination of different setups in the wavelet image decomposition stage together with different fusion strategies for the final merging stage that generates the resulting representation. Most of the approaches evaluate results according to the application for which they are intended for. Sometimes a human observer is selected to judge the quality of the obtained results. In the current work, quantitative values are considered in order to find correlations between setups and performance of obtained results; these correlations can be used to define a criteria for selecting the best fusion strategy for a given pair of cross-spectral images. The whole procedure is evaluated with a large set of correctly registered visible and infrared image pairs, including both Near InfraRed (NIR) and Long Wave InfraRed (LWIR).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ADAS; 600.086; 600.076 Approved no
Call Number Admin @ si @SCA2016 Serial 2807
Permanent link to this record
 

 
Author Jorge Bernal; Nima Tajkbaksh; F. Javier Sanchez; Bogdan J. Matuszewski; Hao Chen; Lequan Yu; Quentin Angermann; Olivier Romain; Bjorn Rustad; Ilangko Balasingham; Konstantin Pogorelov; Sungbin Choi; Quentin Debard; Lena Maier Hein; Stefanie Speidel; Danail Stoyanov; Patrick Brandao; Henry Cordova; Cristina Sanchez Montes; Suryakanth R. Gurudu; Gloria Fernandez Esparrach; Xavier Dray; Jianming Liang; Aymeric Histace
Title Comparative Validation of Polyp Detection Methods in Video Colonoscopy: Results from the MICCAI 2015 Endoscopic Vision Challenge Type Journal Article
Year 2017 Publication IEEE Transactions on Medical Imaging Abbreviated Journal TMI
Volume 36 Issue (down) 6 Pages 1231 - 1249
Keywords Endoscopic vision; Polyp Detection; Handcrafted features; Machine Learning; Validation Framework
Abstract Colonoscopy is the gold standard for colon cancer screening though still some polyps are missed, thus preventing early disease detection and treatment. Several computational systems have been proposed to assist polyp detection during colonoscopy but so far without consistent evaluation. The lack
of publicly available annotated databases has made it difficult to compare methods and to assess if they achieve performance levels acceptable for clinical use. The Automatic Polyp Detection subchallenge, conducted as part of the Endoscopic Vision Challenge (http://endovis.grand-challenge.org) at the international conference on Medical Image Computing and Computer Assisted
Intervention (MICCAI) in 2015, was an effort to address this need. In this paper, we report the results of this comparative evaluation of polyp detection methods, as well as describe additional experiments to further explore differences between methods. We define performance metrics and provide evaluation databases that allow comparison of multiple methodologies. Results show that convolutional neural networks (CNNs) are the state of the art. Nevertheless it is also demonstrated that combining different methodologies can lead to an improved overall performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MV; 600.096; 600.075 Approved no
Call Number Admin @ si @ BTS2017 Serial 2949
Permanent link to this record
 

 
Author Xinhang Song; Shuqiang Jiang; Luis Herranz
Title Multi-Scale Multi-Feature Context Modeling for Scene Recognition in the Semantic Manifold Type Journal Article
Year 2017 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP
Volume 26 Issue (down) 6 Pages 2721-2735
Keywords
Abstract Before the big data era, scene recognition was often approached with two-step inference using localized intermediate representations (objects, topics, and so on). One of such approaches is the semantic manifold (SM), in which patches and images are modeled as points in a semantic probability simplex. Patch models are learned resorting to weak supervision via image labels, which leads to the problem of scene categories co-occurring in this semantic space. Fortunately, each category has its own co-occurrence patterns that are consistent across the images in that category. Thus, discovering and modeling these patterns are critical to improve the recognition performance in this representation. Since the emergence of large data sets, such as ImageNet and Places, these approaches have been relegated in favor of the much more powerful convolutional neural networks (CNNs), which can automatically learn multi-layered representations from the data. In this paper, we address many limitations of the original SM approach and related works. We propose discriminative patch representations using neural networks and further propose a hybrid architecture in which the semantic manifold is built on top of multiscale CNNs. Both representations can be computed significantly faster than the Gaussian mixture models of the original SM. To combine multiple scales, spatial relations, and multiple features, we formulate rich context models using Markov random fields. To solve the optimization problem, we analyze global and local approaches, where a top-down hierarchical algorithm has the best performance. Experimental results show that exploiting different types of contextual relations jointly consistently improves the recognition accuracy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes LAMP; 600.120 Approved no
Call Number Admin @ si @ SJH2017a Serial 2963
Permanent link to this record
 

 
Author Jordi Esquirol; Cristina Palmero; Vanessa Bayo; Miquel Angel Cos; Sergio Escalera; David Sanchez; Maider Sanchez; Noelia Serrano; Mireia Relats
Title Automatic RBG-depth-pressure anthropometric analysis and individualised sleep solution prescription Type Journal
Year 2017 Publication Journal of Medical Engineering & Technology Abbreviated Journal JMET
Volume 41 Issue (down) 6 Pages 486-497
Keywords
Abstract INTRODUCTION:
Sleep surfaces must adapt to individual somatotypic features to maintain a comfortable, convenient and healthy sleep, preventing diseases and injuries. Individually determining the most adequate rest surface can often be a complex and subjective question.
OBJECTIVES:
To design and validate an automatic multimodal somatotype determination model to automatically recommend an individually designed mattress-topper-pillow combination.
METHODS:
Design and validation of an automated prescription model for an individualised sleep system is performed through a single-image 2 D-3 D analysis and body pressure distribution, to objectively determine optimal individual sleep surfaces combining five different mattress densities, three different toppers and three cervical pillows.
RESULTS:
A final study (n = 151) and re-analysis (n = 117) defined and validated the model, showing high correlations between calculated and real data (>85% in height and body circumferences, 89.9% in weight, 80.4% in body mass index and more than 70% in morphotype categorisation).
CONCLUSIONS:
Somatotype determination model can accurately prescribe an individualised sleep solution. This can be useful for healthy people and for health centres that need to adapt sleep surfaces to people with special needs. Next steps will increase model's accuracy and analise, if this prescribed individualised sleep solution can improve sleep quantity and quality; additionally, future studies will adapt the model to mattresses with technological improvements, tailor-made production and will define interfaces for people with special needs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HUPBA; no menciona Approved no
Call Number Admin @ si @ EPB2017 Serial 3010
Permanent link to this record
 

 
Author Marta Diez-Ferrer; Debora Gil; Cristian Tebe; Carles Sanchez
Title Positive Airway Pressure to Enhance Computed Tomography Imaging for Airway Segmentation for Virtual Bronchoscopic Navigation Type Journal Article
Year 2018 Publication Respiration Abbreviated Journal RES
Volume 96 Issue (down) 6 Pages 525-534
Keywords Multidetector computed tomography; Bronchoscopy; Continuous positive airway pressure; Image enhancement; Virtual bronchoscopic navigation
Abstract Abstract
RATIONALE:
Virtual bronchoscopic navigation (VBN) guidance to peripheral pulmonary lesions is often limited by insufficient segmentation of the peripheral airways.

OBJECTIVES:
To test the effect of applying positive airway pressure (PAP) during CT acquisition to improve segmentation, particularly at end-expiration.

METHODS:
CT acquisitions in inspiration and expiration with 4 PAP protocols were recorded prospectively and compared to baseline inspiratory acquisitions in 20 patients. The 4 protocols explored differences between devices (flow vs. turbine), exposures (within seconds vs. 15-min) and pressure levels (10 vs. 14 cmH2O). Segmentation quality was evaluated with the number of airways and number of endpoints reached. A generalized mixed-effects model explored the estimated effect of each protocol.

MEASUREMENTS AND MAIN RESULTS:
Patient characteristics and lung function did not significantly differ between protocols. Compared to baseline inspiratory acquisitions, expiratory acquisitions after 15 min of 14 cmH2O PAP segmented 1.63-fold more airways (95% CI 1.07-2.48; p = 0.018) and reached 1.34-fold more endpoints (95% CI 1.08-1.66; p = 0.004). Inspiratory acquisitions performed immediately under 10 cmH2O PAP reached 1.20-fold (95% CI 1.09-1.33; p < 0.001) more endpoints; after 15 min the increase was 1.14-fold (95% CI 1.05-1.24; p < 0.001).

CONCLUSIONS:
CT acquisitions with PAP segment more airways and reach more endpoints than baseline inspiratory acquisitions. The improvement is particularly evident at end-expiration after 15 min of 14 cmH2O PAP. Further studies must confirm that the improvement increases diagnostic yield when using VBN to evaluate peripheral pulmonary lesions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM; 600.145 Approved no
Call Number Admin @ si @ DGT2018 Serial 3135
Permanent link to this record
 

 
Author Reza Azad; Maryam Asadi-Aghbolaghi; Shohreh Kasaei; Sergio Escalera
Title Dynamic 3D Hand Gesture Recognition by Learning Weighted Depth Motion Maps Type Journal Article
Year 2019 Publication IEEE Transactions on Circuits and Systems for Video Technology Abbreviated Journal TCSVT
Volume 29 Issue (down) 6 Pages 1729-1740
Keywords Hand gesture recognition; Multilevel temporal sampling; Weighted depth motion map; Spatio-temporal description; VLAD encoding
Abstract Hand gesture recognition from sequences of depth maps is a challenging computer vision task because of the low inter-class and high intra-class variability, different execution rates of each gesture, and the high articulated nature of human hand. In this paper, a multilevel temporal sampling (MTS) method is first proposed that is based on the motion energy of key-frames of depth sequences. As a result, long, middle, and short sequences are generated that contain the relevant gesture information. The MTS results in increasing the intra-class similarity while raising the inter-class dissimilarities. The weighted depth motion map (WDMM) is then proposed to extract the spatio-temporal information from generated summarized sequences by an accumulated weighted absolute difference of consecutive frames. The histogram of gradient (HOG) and local binary pattern (LBP) are exploited to extract features from WDMM. The obtained results define the current state-of-the-art on three public benchmark datasets of: MSR Gesture 3D, SKIG, and MSR Action 3D, for 3D hand gesture recognition. We also achieve competitive results on NTU action dataset.
Address June 2019,
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HUPBA; no proj Approved no
Call Number Admin @ si @ AAK2018 Serial 3213
Permanent link to this record
 

 
Author Mikhail Mozerov; Joost Van de Weijer
Title One-view occlusion detection for stereo matching with a fully connected CRF model Type Journal Article
Year 2019 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP
Volume 28 Issue (down) 6 Pages 2936-2947
Keywords Stereo matching; energy minimization; fully connected MRF model; geodesic distance filter
Abstract In this paper, we extend the standard belief propagation (BP) sequential technique proposed in the tree-reweighted sequential method [15] to the fully connected CRF models with the geodesic distance affinity. The proposed method has been applied to the stereo matching problem. Also a new approach to the BP marginal solution is proposed that we call one-view occlusion detection (OVOD). In contrast to the standard winner takes all (WTA) estimation, the proposed OVOD solution allows to find occluded regions in the disparity map and simultaneously improve the matching result. As a result we can perform only
one energy minimization process and avoid the cost calculation for the second view and the left-right check procedure. We show that the OVOD approach considerably improves results for cost augmentation and energy minimization techniques in comparison with the standard one-view affinity space implementation. We apply our method to the Middlebury data set and reach state-ofthe-art especially for median, average and mean squared error metrics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes LAMP; 600.098; 600.109; 602.133; 600.120 Approved no
Call Number Admin @ si @ MoW2019 Serial 3221
Permanent link to this record
 

 
Author Mikhail Mozerov; Fei Yang; Joost Van de Weijer
Title Sparse Data Interpolation Using the Geodesic Distance Affinity Space Type Journal Article
Year 2019 Publication IEEE Signal Processing Letters Abbreviated Journal SPL
Volume 26 Issue (down) 6 Pages 943 - 947
Keywords
Abstract In this letter, we adapt the geodesic distance-based recursive filter to the sparse data interpolation problem. The proposed technique is general and can be easily applied to any kind of sparse data. We demonstrate its superiority over other interpolation techniques in three experiments for qualitative and quantitative evaluation. In addition, we compare our method with the popular interpolation algorithm presented in the paper on EpicFlow optical flow, which is intuitively motivated by a similar geodesic distance principle. The comparison shows that our algorithm is more accurate and considerably faster than the EpicFlow interpolation technique.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes LAMP; 600.120 Approved no
Call Number Admin @ si @ MYW2019 Serial 3261
Permanent link to this record
 

 
Author Beata Megyesi; Bernhard Esslinger; Alicia Fornes; Nils Kopal; Benedek Lang; George Lasry; Karl de Leeuw; Eva Pettersson; Arno Wacker; Michelle Waldispuhl
Title Decryption of historical manuscripts: the DECRYPT project Type Journal Article
Year 2020 Publication Cryptologia Abbreviated Journal CRYPT
Volume 44 Issue (down) 6 Pages 545-559
Keywords automatic decryption; cipher collection; historical cryptology; image transcription
Abstract Many historians and linguists are working individually and in an uncoordinated fashion on the identification and decryption of historical ciphers. This is a time-consuming process as they often work without access to automatic methods and processes that can accelerate the decipherment. At the same time, computer scientists and cryptologists are developing algorithms to decrypt various cipher types without having access to a large number of original ciphertexts. In this paper, we describe the DECRYPT project aiming at the creation of resources and tools for historical cryptology by bringing the expertise of various disciplines together for collecting data, exchanging methods for faster progress to transcribe, decrypt and contextualize historical encrypted manuscripts. We present our goals and work-in progress of a general approach for analyzing historical encrypted manuscripts using standardized methods and a new set of state-of-the-art tools. We release the data and tools as open-source hoping that all mentioned disciplines would benefit and contribute to the research infrastructure of historical cryptology.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes DAG; 600.140; 600.121 Approved no
Call Number Admin @ si @ MEF2020 Serial 3347
Permanent link to this record
 

 
Author Hugo Bertiche; Meysam Madadi; Sergio Escalera
Title PBNS: Physically Based Neural Simulation for Unsupervised Garment Pose Space Deformation Type Journal Article
Year 2021 Publication ACM Transactions on Graphics Abbreviated Journal
Volume 40 Issue (down) 6 Pages 1-14
Keywords
Abstract We present a methodology to automatically obtain Pose Space Deformation (PSD) basis for rigged garments through deep learning. Classical approaches rely on Physically Based Simulations (PBS) to animate clothes. These are general solutions that, given a sufficiently fine-grained discretization of space and time, can achieve highly realistic results. However, they are computationally expensive and any scene modification prompts the need of re-simulation. Linear Blend Skinning (LBS) with PSD offers a lightweight alternative to PBS, though, it needs huge volumes of data to learn proper PSD. We propose using deep learning, formulated as an implicit PBS, to unsupervisedly learn realistic cloth Pose Space Deformations in a constrained scenario: dressed humans. Furthermore, we show it is possible to train these models in an amount of time comparable to a PBS of a few sequences. To the best of our knowledge, we are the first to propose a neural simulator for cloth.
While deep-based approaches in the domain are becoming a trend, these are data-hungry models. Moreover, authors often propose complex formulations to better learn wrinkles from PBS data. Supervised learning leads to physically inconsistent predictions that require collision solving to be used. Also, dependency on PBS data limits the scalability of these solutions, while their formulation hinders its applicability and compatibility. By proposing an unsupervised methodology to learn PSD for LBS models (3D animation standard), we overcome both of these drawbacks. Results obtained show cloth-consistency in the animated garments and meaningful pose-dependant folds and wrinkles. Our solution is extremely efficient, handles multiple layers of cloth, allows unsupervised outfit resizing and can be easily applied to any custom 3D avatar.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HUPBA; no proj Approved no
Call Number Admin @ si @ BME2021c Serial 3643
Permanent link to this record
 

 
Author AN Ruchai; VI Kober; KA Dorofeev; VN Karnaukhov; Mikhail Mozerov
Title Classification of breast abnormalities using a deep convolutional neural network and transfer learning Type Journal Article
Year 2021 Publication Journal of Communications Technology and Electronics Abbreviated Journal
Volume 66 Issue (down) 6 Pages 778–783
Keywords
Abstract A new algorithm for classification of breast pathologies in digital mammography using a convolutional neural network and transfer learning is proposed. The following pretrained neural networks were chosen: MobileNetV2, InceptionResNetV2, Xception, and ResNetV2. All mammographic images were pre-processed to improve classification reliability. Transfer training was carried out using additional data augmentation and fine-tuning. The performance of the proposed algorithm for classification of breast pathologies in terms of accuracy on real data is discussed and compared with that of state-of-the-art algorithms on the available MIAS database.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes LAMP; Approved no
Call Number Admin @ si @ RKD2022 Serial 3680
Permanent link to this record
 

 
Author Rafael E. Rivadeneira; Angel Sappa; Boris X. Vintimilla; Riad I. Hammoud
Title A Novel Domain Transfer-Based Approach for Unsupervised Thermal Image Super-Resolution Type Journal Article
Year 2022 Publication Sensors Abbreviated Journal SENS
Volume 22 Issue (down) 6 Pages 2254
Keywords Thermal image super-resolution; unsupervised super-resolution; thermal images; attention module; semiregistered thermal images
Abstract This paper presents a transfer domain strategy to tackle the limitations of low-resolution thermal sensors and generate higher-resolution images of reasonable quality. The proposed technique employs a CycleGAN architecture and uses a ResNet as an encoder in the generator along with an attention module and a novel loss function. The network is trained on a multi-resolution thermal image dataset acquired with three different thermal sensors. Results report better performance benchmarking results on the 2nd CVPR-PBVS-2021 thermal image super-resolution challenge than state-of-the-art methods. The code of this work is available online.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MSIAU; Approved no
Call Number Admin @ si @ RSV2022b Serial 3688
Permanent link to this record
 

 
Author Hugo Bertiche; Meysam Madadi; Sergio Escalera
Title Neural Cloth Simulation Type Journal Article
Year 2022 Publication ACM Transactions on Graphics Abbreviated Journal ACMTGraph
Volume 41 Issue (down) 6 Pages 1-14
Keywords
Abstract We present a general framework for the garment animation problem through unsupervised deep learning inspired in physically based simulation. Existing trends in the literature already explore this possibility. Nonetheless, these approaches do not handle cloth dynamics. Here, we propose the first methodology able to learn realistic cloth dynamics unsupervisedly, and henceforth, a general formulation for neural cloth simulation. The key to achieve this is to adapt an existing optimization scheme for motion from simulation based methodologies to deep learning. Then, analyzing the nature of the problem, we devise an architecture able to automatically disentangle static and dynamic cloth subspaces by design. We will show how this improves model performance. Additionally, this opens the possibility of a novel motion augmentation technique that greatly improves generalization. Finally, we show it also allows to control the level of motion in the predictions. This is a useful, never seen before, tool for artists. We provide of detailed analysis of the problem to establish the bases of neural cloth simulation and guide future research into the specifics of this domain.



ACM Transactions on GraphicsVolume 41Issue 6December 2022 Article No.: 220pp 1–
Address Dec 2022
Corporate Author Thesis
Publisher ACM Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Admin @ si @ BME2022b Serial 3779
Permanent link to this record
 

 
Author Fadi Dornaika; Angel Sappa
Title Evaluation of an Appearance-based 3D Face Tracker using Dense 3D Data Type Journal
Year 2008 Publication Machine Vision and Applications Abbreviated Journal
Volume 19 Issue (down) 5-6 Pages 427–441
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ADAS Approved no
Call Number ADAS @ adas @ DoS2008b Serial 1018
Permanent link to this record