|   | 
Details
   web
Records
Author T.Chauhan; E.Perales; Kaida Xiao; E.Hird ; Dimosthenis Karatzas; Sophie Wuerger
Title The achromatic locus: Effect of navigation direction in color space Type Journal Article
Year 2014 Publication Journal of Vision Abbreviated Journal VSS
Volume 14 (1) Issue (up) 25 Pages 1-11
Keywords achromatic; unique hues; color constancy; luminance; color space
Abstract 5Y Impact Factor: 2.99 / 1st (Ophthalmology)
An achromatic stimulus is defined as a patch of light that is devoid of any hue. This is usually achieved by asking observers to adjust the stimulus such that it looks neither red nor green and at the same time neither yellow nor blue. Despite the theoretical and practical importance of the achromatic locus, little is known about the variability in these settings. The main purpose of the current study was to evaluate whether achromatic settings were dependent on the task of the observers, namely the navigation direction in color space. Observers could either adjust the test patch along the two chromatic axes in the CIE u*v* diagram or, alternatively, navigate along the unique-hue lines. Our main result is that the navigation method affects the reliability of these achromatic settings. Observers are able to make more reliable achromatic settings when adjusting the test patch along the directions defined by the four unique hues as opposed to navigating along the main axes in the commonly used CIE u*v* chromaticity plane. This result holds across different ambient viewing conditions (Dark, Daylight, Cool White Fluorescent) and different test luminance levels (5, 20, and 50 cd/m2). The reduced variability in the achromatic settings is consistent with the idea that internal color representations are more aligned with the unique-hue lines than the u* and v* axes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes DAG; 600.077 Approved no
Call Number Admin @ si @ CPX2014 Serial 2418
Permanent link to this record
 

 
Author Lluis Pere de las Heras; Ahmed Sheraz; Marcus Liwicki; Ernest Valveny; Gemma Sanchez
Title Statistical Segmentation and Structural Recognition for Floor Plan Interpretation Type Journal Article
Year 2014 Publication International Journal on Document Analysis and Recognition Abbreviated Journal IJDAR
Volume 17 Issue (up) 3 Pages 221-237
Keywords
Abstract A generic method for floor plan analysis and interpretation is presented in this article. The method, which is mainly inspired by the way engineers draw and interpret floor plans, applies two recognition steps in a bottom-up manner. First, basic building blocks, i.e., walls, doors, and windows are detected using a statistical patch-based segmentation approach. Second, a graph is generated, and structural pattern recognition techniques are applied to further locate the main entities, i.e., rooms of the building. The proposed approach is able to analyze any type of floor plan regardless of the notation used. We have evaluated our method on different publicly available datasets of real architectural floor plans with different notations. The overall detection and recognition accuracy is about 95 %, which is significantly better than any other state-of-the-art method. Our approach is generic enough such that it could be easily adopted to the recognition and interpretation of any other printed machine-generated structured documents.
Address
Corporate Author Thesis
Publisher Springer Berlin Heidelberg Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-2833 ISBN Medium
Area Expedition Conference
Notes DAG; ADAS; 600.076; 600.077 Approved no
Call Number HSL2014 Serial 2370
Permanent link to this record
 

 
Author Marçal Rusiñol; Josep Llados
Title Boosting the Handwritten Word Spotting Experience by Including the User in the Loop Type Journal Article
Year 2014 Publication Pattern Recognition Abbreviated Journal PR
Volume 47 Issue (up) 3 Pages 1063–1072
Keywords Handwritten word spotting; Query by example; Relevance feedback; Query fusion; Multidimensional scaling
Abstract In this paper, we study the effect of taking the user into account in a query-by-example handwritten word spotting framework. Several off-the-shelf query fusion and relevance feedback strategies have been tested in the handwritten word spotting context. The increase in terms of precision when the user is included in the loop is assessed using two datasets of historical handwritten documents and two baseline word spotting approaches both based on the bag-of-visual-words model. We finally present two alternative ways of presenting the results to the user that might be more attractive and suitable to the user's needs than the classic ranked list.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-3203 ISBN Medium
Area Expedition Conference
Notes DAG; 600.045; 600.061; 600.077 Approved no
Call Number Admin @ si @ RuL2013 Serial 2343
Permanent link to this record
 

 
Author Volkmar Frinken; Andreas Fischer; Markus Baumgartner; Horst Bunke
Title Keyword spotting for self-training of BLSTM NN based handwriting recognition systems Type Journal Article
Year 2014 Publication Pattern Recognition Abbreviated Journal PR
Volume 47 Issue (up) 3 Pages 1073-1082
Keywords Document retrieval; Keyword spotting; Handwriting recognition; Neural networks; Semi-supervised learning
Abstract The automatic transcription of unconstrained continuous handwritten text requires well trained recognition systems. The semi-supervised paradigm introduces the concept of not only using labeled data but also unlabeled data in the learning process. Unlabeled data can be gathered at little or not cost. Hence it has the potential to reduce the need for labeling training data, a tedious and costly process. Given a weak initial recognizer trained on labeled data, self-training can be used to recognize unlabeled data and add words that were recognized with high confidence to the training set for re-training. This process is not trivial and requires great care as far as selecting the elements that are to be added to the training set is concerned. In this paper, we propose to use a bidirectional long short-term memory neural network handwritten recognition system for keyword spotting in order to select new elements. A set of experiments shows the high potential of self-training for bootstrapping handwriting recognition systems, both for modern and historical handwritings, and demonstrate the benefits of using keyword spotting over previously published self-training schemes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes DAG; 600.077; 602.101 Approved no
Call Number Admin @ si @ FFB2014 Serial 2297
Permanent link to this record
 

 
Author David Roche; Debora Gil; Jesus Giraldo
Title Mathematical modeling of G protein-coupled receptor function: What can we learn from empirical and mechanistic models? Type Book Chapter
Year 2014 Publication G Protein-Coupled Receptors – Modeling and Simulation Advances in Experimental Medicine and Biology Abbreviated Journal
Volume 796 Issue (up) 3 Pages 159-181
Keywords β-arrestin; biased agonism; curve fitting; empirical modeling; evolutionary algorithm; functional selectivity; G protein; GPCR; Hill coefficient; intrinsic efficacy; inverse agonism; mathematical modeling; mechanistic modeling; operational model; parameter optimization; receptor dimer; receptor oligomerization; receptor constitutive activity; signal transduction; two-state model
Abstract Empirical and mechanistic models differ in their approaches to the analysis of pharmacological effect. Whereas the parameters of the former are not physical constants those of the latter embody the nature, often complex, of biology. Empirical models are exclusively used for curve fitting, merely to characterize the shape of the E/[A] curves. Mechanistic models, on the contrary, enable the examination of mechanistic hypotheses by parameter simulation. Regretfully, the many parameters that mechanistic models may include can represent a great difficulty for curve fitting, representing, thus, a challenge for computational method development. In the present study some empirical and mechanistic models are shown and the connections, which may appear in a number of cases between them, are analyzed from the curves they yield. It may be concluded that systematic and careful curve shape analysis can be extremely useful for the understanding of receptor function, ligand classification and drug discovery, thus providing a common language for the communication between pharmacologists and medicinal chemists.
Address
Corporate Author Thesis
Publisher Springer Netherlands Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0065-2598 ISBN 978-94-007-7422-3 Medium
Area Expedition Conference
Notes IAM; 600.075 Approved no
Call Number IAM @ iam @ RGG2014 Serial 2197
Permanent link to this record
 

 
Author Javier Marin; David Vazquez; Antonio Lopez; Jaume Amores; Ludmila I. Kuncheva
Title Occlusion handling via random subspace classifiers for human detection Type Journal Article
Year 2014 Publication IEEE Transactions on Systems, Man, and Cybernetics (Part B) Abbreviated Journal TSMCB
Volume 44 Issue (up) 3 Pages 342-354
Keywords Pedestriand Detection; occlusion handling
Abstract This paper describes a general method to address partial occlusions for human detection in still images. The Random Subspace Method (RSM) is chosen for building a classifier ensemble robust against partial occlusions. The component classifiers are chosen on the basis of their individual and combined performance. The main contribution of this work lies in our approach’s capability to improve the detection rate when partial occlusions are present without compromising the detection performance on non occluded data. In contrast to many recent approaches, we propose a method which does not require manual labelling of body parts, defining any semantic spatial components, or using additional data coming from motion or stereo. Moreover, the method can be easily extended to other object classes. The experiments are performed on three large datasets: the INRIA person dataset, the Daimler Multicue dataset, and a new challenging dataset, called PobleSec, in which a considerable number of targets are partially occluded. The different approaches are evaluated at the classification and detection levels for both partially occluded and non-occluded data. The experimental results show that our detector outperforms state-of-the-art approaches in the presence of partial occlusions, while offering performance and reliability similar to those of the holistic approach on non-occluded data. The datasets used in our experiments have been made publicly available for benchmarking purposes
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2168-2267 ISBN Medium
Area Expedition Conference
Notes ADAS; 605.203; 600.057; 600.054; 601.042; 601.187; 600.076 Approved no
Call Number ADAS @ adas @ MVL2014 Serial 2213
Permanent link to this record
 

 
Author Antonio Clavelli; Dimosthenis Karatzas; Josep Llados; Mario Ferraro; Giuseppe Boccignone
Title Modelling task-dependent eye guidance to objects in pictures Type Journal Article
Year 2014 Publication Cognitive Computation Abbreviated Journal CoCom
Volume 6 Issue (up) 3 Pages 558-584
Keywords Visual attention; Gaze guidance; Value; Payoff; Stochastic fixation prediction
Abstract 5Y Impact Factor: 1.14 / 3rd (Computer Science, Artificial Intelligence)
We introduce a model of attentional eye guidance based on the rationale that the deployment of gaze is to be considered in the context of a general action-perception loop relying on two strictly intertwined processes: sensory processing, depending on current gaze position, identifies sources of information that are most valuable under the given task; motor processing links such information with the oculomotor act by sampling the next gaze position and thus performing the gaze shift. In such a framework, the choice of where to look next is task-dependent and oriented to classes of objects embedded within pictures of complex scenes. The dependence on task is taken into account by exploiting the value and the payoff of gazing at certain image patches or proto-objects that provide a sparse representation of the scene objects. The different levels of the action-perception loop are represented in probabilistic form and eventually give rise to a stochastic process that generates the gaze sequence. This way the model also accounts for statistical properties of gaze shifts such as individual scan path variability. Results of the simulations are compared either with experimental data derived from publicly available datasets and from our own experiments.
Address
Corporate Author Thesis
Publisher Springer US Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1866-9956 ISBN Medium
Area Expedition Conference
Notes DAG; 600.056; 600.045; 605.203; 601.212; 600.077 Approved no
Call Number Admin @ si @ CKL2014 Serial 2419
Permanent link to this record
 

 
Author Onur Ferhat; Fernando Vilariño; F. Javier Sanchez
Title A cheap portable eye-tracker solution for common setups. Type Journal Article
Year 2014 Publication Journal of Eye Movement Research Abbreviated Journal JEMR
Volume 7 Issue (up) 3 Pages 1-10
Keywords
Abstract We analyze the feasibility of a cheap eye-tracker where the hardware consists of a single webcam and a Raspberry Pi device. Our aim is to discover the limits of such a system and to see whether it provides an acceptable performance. We base our work on the open source Opengazer (Zielinski, 2013) and we propose several improvements to create a robust, real-time system which can work on a computer with 30Hz sampling rate. After assessing the accuracy of our eye-tracker in elaborated experiments involving 12 subjects under 4 different system setups, we install it on a Raspberry Pi to create a portable stand-alone eye-tracker which achieves 1.42° horizontal accuracy with 3Hz refresh rate for a building cost of 70 Euros.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ;SIAI Approved no
Call Number Admin @ si @ FVS2014 Serial 2435
Permanent link to this record
 

 
Author Xavier Perez Sala; Sergio Escalera; Cecilio Angulo; Jordi Gonzalez
Title A survey on model based approaches for 2D and 3D visual human pose recovery Type Journal Article
Year 2014 Publication Sensors Abbreviated Journal SENS
Volume 14 Issue (up) 3 Pages 4189-4210
Keywords human pose recovery; human body modelling; behavior analysis; computer vision
Abstract Human Pose Recovery has been studied in the field of Computer Vision for the last 40 years. Several approaches have been reported, and significant improvements have been obtained in both data representation and model design. However, the problem of Human Pose Recovery in uncontrolled environments is far from being solved. In this paper, we define a general taxonomy to group model based approaches for Human Pose Recovery, which is composed of five main modules: appearance, viewpoint, spatial relations, temporal consistence, and behavior. Subsequently, a methodological comparison is performed following the proposed taxonomy, evaluating current SoA approaches in the aforementioned five group categories. As a result of this comparison, we discuss the main advantages and drawbacks of the reviewed literature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HuPBA; ISE; 600.046; 600.063; 600.078;MILAB Approved no
Call Number Admin @ si @ PEA2014 Serial 2443
Permanent link to this record
 

 
Author David Fernandez; Josep Llados; Alicia Fornes
Title A graph-based approach for segmenting touching lines in historical handwritten documents Type Journal Article
Year 2014 Publication International Journal on Document Analysis and Recognition Abbreviated Journal IJDAR
Volume 17 Issue (up) 3 Pages 293-312
Keywords Text line segmentation; Handwritten documents; Document image processing; Historical document analysis
Abstract Text line segmentation in handwritten documents is an important task in the recognition of historical documents. Handwritten document images contain text lines with multiple orientations, touching and overlapping characters between consecutive text lines and different document structures, making line segmentation a difficult task. In this paper, we present a new approach for handwritten text line segmentation solving the problems of touching components, curvilinear text lines and horizontally overlapping components. The proposed algorithm formulates line segmentation as finding the central path in the area between two consecutive lines. This is solved as a graph traversal problem. A graph is constructed using the skeleton of the image. Then, a path-finding algorithm is used to find the optimum path between text lines. The proposed algorithm has been evaluated on a comprehensive dataset consisting of five databases: ICDAR2009, ICDAR2013, UMD, the George Washington and the Barcelona Marriages Database. The proposed method outperforms the state-of-the-art considering the different types and difficulties of the benchmarking data.
Address
Corporate Author Thesis
Publisher Springer Berlin Heidelberg Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-2833 ISBN Medium
Area Expedition Conference
Notes DAG; 600.056; 600.061; 602.006; 600.077 Approved no
Call Number Admin @ si @ FLF2014 Serial 2459
Permanent link to this record
 

 
Author Jose Manuel Alvarez; Antonio Lopez; Theo Gevers; Felipe Lumbreras
Title Combining Priors, Appearance and Context for Road Detection Type Journal Article
Year 2014 Publication IEEE Transactions on Intelligent Transportation Systems Abbreviated Journal TITS
Volume 15 Issue (up) 3 Pages 1168-1178
Keywords Illuminant invariance; lane markings; road detection; road prior; road scene understanding; vanishing point; 3-D scene layout
Abstract Detecting the free road surface ahead of a moving vehicle is an important research topic in different areas of computer vision, such as autonomous driving or car collision warning.
Current vision-based road detection methods are usually based solely on low-level features. Furthermore, they generally assume structured roads, road homogeneity, and uniform lighting conditions, constraining their applicability in real-world scenarios. In this paper, road priors and contextual information are introduced for road detection. First, we propose an algorithm to estimate road priors online using geographical information, providing relevant initial information about the road location. Then, contextual cues, including horizon lines, vanishing points, lane markings, 3-D scene layout, and road geometry, are used in addition to low-level cues derived from the appearance of roads. Finally, a generative model is used to combine these cues and priors, leading to a road detection method that is, to a large degree, robust to varying imaging conditions, road types, and scenarios.
Address
Corporate Author Thesis
Publisher Place of Publication Editor IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1524-9050 ISBN Medium
Area Expedition Conference
Notes ADAS; 600.076;ISE Approved no
Call Number Admin @ si @ ALG2014 Serial 2501
Permanent link to this record
 

 
Author David Vazquez; Javier Marin; Antonio Lopez; Daniel Ponsa; David Geronimo
Title Virtual and Real World Adaptation for Pedestrian Detection Type Journal Article
Year 2014 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI
Volume 36 Issue (up) 4 Pages 797-809
Keywords Domain Adaptation; Pedestrian Detection
Abstract Pedestrian detection is of paramount interest for many applications. Most promising detectors rely on discriminatively learnt classifiers, i.e., trained with annotated samples. However, the annotation step is a human intensive and subjective task worth to be minimized. By using virtual worlds we can automatically obtain precise and rich annotations. Thus, we face the question: can a pedestrian appearance model learnt in realistic virtual worlds work successfully for pedestrian detection in realworld images?. Conducted experiments show that virtual-world based training can provide excellent testing accuracy in real world, but it can also suffer the dataset shift problem as real-world based training does. Accordingly, we have designed a domain adaptation framework, V-AYLA, in which we have tested different techniques to collect a few pedestrian samples from the target domain (real world) and combine them with the many examples of the source domain (virtual world) in order to train a domain adapted pedestrian classifier that will operate in the target domain. V-AYLA reports the same detection accuracy than when training with many human-provided pedestrian annotations and testing with real-world images of the same domain. To the best of our knowledge, this is the first work demonstrating adaptation of virtual and real worlds for developing an object detector.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0162-8828 ISBN Medium
Area Expedition Conference
Notes ADAS; 600.057; 600.054; 600.076 Approved no
Call Number ADAS @ adas @ VML2014 Serial 2275
Permanent link to this record
 

 
Author Juan Ramon Terven Salinas; Joaquin Salas; Bogdan Raducanu
Title New Opportunities for Computer Vision-Based Assistive Technology Systems for the Visually Impaired Type Journal Article
Year 2014 Publication Computer Abbreviated Journal COMP
Volume 47 Issue (up) 4 Pages 52-58
Keywords
Abstract Computing advances and increased smartphone use gives technology system designers greater flexibility in exploiting computer vision to support visually impaired users. Understanding these users' needs will certainly provide insight for the development of improved usability of computing devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9162 ISBN Medium
Area Expedition Conference
Notes LAMP; Approved no
Call Number Admin @ si @ TSR2014a Serial 2317
Permanent link to this record
 

 
Author Frederic Sampedro; Anna Domenech; Sergio Escalera
Title Obtaining quantitative global tumoral state indicators based on whole-body PET/CT scans: A breast cancer case study Type Journal Article
Year 2014 Publication Nuclear Medicine Communications Abbreviated Journal NMC
Volume 35 Issue (up) 4 Pages 362-371
Keywords
Abstract Objectives: In this work we address the need for the computation of quantitative global tumoral state indicators from oncological whole-body PET/computed tomography scans. The combination of such indicators with other oncological information such as tumor markers or biopsy results would prove useful in oncological decision-making scenarios.

Materials and methods: From an ordering of 100 breast cancer patients on the basis of oncological state through visual analysis by a consensus of nuclear medicine specialists, a set of numerical indicators computed from image analysis of the PET/computed tomography scan is presented, which attempts to summarize a patient’s oncological state in a quantitative manner taking into consideration the total tumor volume, aggressiveness, and spread.

Results: Results obtained by comparative analysis of the proposed indicators with respect to the experts’ evaluation show up to 87% Pearson’s correlation coefficient when providing expert-guided PET metabolic tumor volume segmentation and 64% correlation when using completely automatic image analysis techniques.

Conclusion: Global quantitative tumor information obtained by whole-body PET/CT image analysis can prove useful in clinical nuclear medicine settings and oncological decision-making scenarios. The completely automatic computation of such indicators would improve its impact as time efficiency and specialist independence would be achieved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HuPBA;MILAB Approved no
Call Number SDE2014a Serial 2444
Permanent link to this record
 

 
Author Simeon Petkov; Xavier Carrillo; Petia Radeva; Carlo Gatta
Title Diaphragm border detection in coronary X-ray angiographies: New method and applications Type Journal Article
Year 2014 Publication Computerized Medical Imaging and Graphics Abbreviated Journal CMIG
Volume 38 Issue (up) 4 Pages 296-305
Keywords
Abstract X-ray angiography is widely used in cardiac disease diagnosis during or prior to intravascular interventions. The diaphragm motion and the heart beating induce gray-level changes, which are one of the main obstacles in quantitative analysis of myocardial perfusion. In this paper we focus on detecting the diaphragm border in both single images or whole X-ray angiography sequences. We show that the proposed method outperforms state of the art approaches. We extend a previous publicly available data set, adding new ground truth data. We also compose another set of more challenging images, thus having two separate data sets of increasing difficulty. Finally, we show three applications of our method: (1) a strategy to reduce false positives in vessel enhanced images; (2) a digital diaphragm removal algorithm; (3) an improvement in Myocardial Blush Grade semi-automatic estimation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MILAB; LAMP; 600.079 Approved no
Call Number Admin @ si @ PCR2014 Serial 2468
Permanent link to this record