|   | 
Details
   web
Records
Author Henry Velesaca; Raul Mira; Patricia Suarez; Christian X. Larrea; Angel Sappa
Title Deep Learning Based Corn Kernel Classification Type Conference Article
Year 2020 Publication 1st International Workshop and Prize Challenge on Agriculture-Vision: Challenges & Opportunities for Computer Vision in Agriculture Abbreviated Journal
Volume Issue Pages
Keywords
Abstract This paper presents a full pipeline to classify sample sets of corn kernels. The proposed approach follows a segmentation-classification scheme. The image segmentation is performed through a well known deep learningbased approach, the Mask R-CNN architecture, while the classification is performed hrough a novel-lightweight network specially designed for this task—good corn kernel, defective corn kernel and impurity categories are considered. As a second contribution, a carefully annotated multitouching corn kernel dataset has been generated. This dataset has been used for training the segmentation and the classification modules. Quantitative evaluations have been
performed and comparisons with other approaches are provided showing improvements with the proposed pipeline.
Address Virtual CVPR
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference CVPRW
Notes MSIAU; 600.130; 600.122 Approved no
Call Number Admin @ si @ VMS2020 Serial 3430
Permanent link to this record
 

 
Author Rafael E. Rivadeneira; Angel Sappa; Boris X. Vintimilla
Title Thermal Image Super-resolution: A Novel Architecture and Dataset Type Conference Article
Year 2020 Publication 15th International Conference on Computer Vision Theory and Applications Abbreviated Journal
Volume Issue Pages 111-119
Keywords
Abstract This paper proposes a novel CycleGAN architecture for thermal image super-resolution, together with a large dataset consisting of thermal images at different resolutions. The dataset has been acquired using three thermal cameras at different resolutions, which acquire images from the same scenario at the same time. The thermal cameras are mounted in rig trying to minimize the baseline distance to make easier the registration problem.
The proposed architecture is based on ResNet6 as a Generator and PatchGAN as Discriminator. The novelty on the proposed unsupervised super-resolution training (CycleGAN) is possible due to the existence of aforementioned thermal images—images of the same scenario with different resolutions. The proposed approach is evaluated in the dataset and compared with classical bicubic interpolation. The dataset and the network are available.
Address Valletta; Malta; February 2020
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference VISAPP
Notes MSIAU; 600.130; 600.122 Approved no
Call Number Admin @ si @ RSV2020 Serial 3432
Permanent link to this record
 

 
Author Rafael E. Rivadeneira; Angel Sappa; Boris X. Vintimilla; Lin Guo; Jiankun Hou; Armin Mehri; Parichehr Behjati Ardakani; Heena Patel; Vishal Chudasama; Kalpesh Prajapati; Kishor P. Upla; Raghavendra Ramachandra; Kiran Raja; Christoph Busch; Feras Almasri; Olivier Debeir; Sabari Nathan; Priya Kansal; Nolan Gutierrez; Bardia Mojra; William J. Beksi
Title Thermal Image Super-Resolution Challenge – PBVS 2020 Type Conference Article
Year 2020 Publication 16h IEEE Workshop on Perception Beyond the Visible Spectrum Abbreviated Journal
Volume Issue Pages
Keywords
Abstract This paper summarizes the top contributions to the first challenge on thermal image super-resolution (TISR), which was organized as part of the Perception Beyond the Visible Spectrum (PBVS) 2020 workshop. In this challenge, a novel thermal image dataset is considered together with state-of-the-art approaches evaluated under a common framework. The dataset used in the challenge consists of 1021 thermal images, obtained from three distinct thermal cameras at different resolutions (low-resolution, mid-resolution, and high-resolution), resulting in a total of 3063 thermal images. From each resolution, 951 images are used for training and 50 for testing while the 20 remaining images are used for two proposed evaluations. The first evaluation consists of downsampling the low-resolution, mid-resolution, and high-resolution thermal images by x2, x3 and x4 respectively, and comparing their super-resolution results with the corresponding ground truth images. The second evaluation is comprised of obtaining the x2 super-resolution from a given mid-resolution thermal image and comparing it with the corresponding semi-registered high-resolution thermal image. Out of 51 registered participants, 6 teams reached the final validation phase.
Address Virtual CVPR
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference CVPRW
Notes MSIAU; ISE; 600.119; 600.122 Approved no
Call Number Admin @ si @ RSV2020 Serial 3431
Permanent link to this record
 

 
Author Jorge Charco; Angel Sappa; Boris X. Vintimilla; Henry Velesaca
Title Transfer Learning from Synthetic Data in the Camera Pose Estimation Problem Type Conference Article
Year 2020 Publication 15th International Conference on Computer Vision Theory and Applications Abbreviated Journal
Volume Issue Pages
Keywords
Abstract This paper presents a novel Siamese network architecture, as a variant of Resnet-50, to estimate the relative camera pose on multi-view environments. In order to improve the performance of the proposed model a transfer learning strategy, based on synthetic images obtained from a virtual-world, is considered. The transfer learning consists of first training the network using pairs of images from the virtual-world scenario
considering different conditions (i.e., weather, illumination, objects, buildings, etc.); then, the learned weight
of the network are transferred to the real case, where images from real-world scenarios are considered. Experimental results and comparisons with the state of the art show both, improvements on the relative pose estimation accuracy using the proposed model, as well as further improvements when the transfer learning strategy (synthetic-world data transfer learning real-world data) is considered to tackle the limitation on the
training due to the reduced number of pairs of real-images on most of the public data sets.
Address Valletta; Malta; February 2020
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference VISAPP
Notes MSIAU; 600.130; 601.349; 600.122 Approved no
Call Number Admin @ si @ CSV2020 Serial 3433
Permanent link to this record
 

 
Author Xavier Soria; Edgar Riba; Angel Sappa
Title Dense Extreme Inception Network: Towards a Robust CNN Model for Edge Detection Type Conference Article
Year 2020 Publication IEEE Winter Conference on Applications of Computer Vision Abbreviated Journal
Volume Issue Pages
Keywords
Abstract This paper proposes a Deep Learning based edge detector, which is inspired on both HED (Holistically-Nested Edge Detection) and Xception networks. The proposed approach generates thin edge-maps that are plausible for human eyes; it can be used in any edge detection task without previous training or fine tuning process. As a second contribution, a large dataset with carefully annotated edges has been generated. This dataset has been used for training the proposed approach as well the state-of-the-art algorithms for comparisons. Quantitative and qualitative evaluations have been performed on different benchmarks showing improvements with the proposed method when F-measure of ODS and OIS are considered.
Address Aspen; USA; March 2020
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference WACV
Notes MSIAU; 600.130; 601.349; 600.122 Approved no
Call Number Admin @ si @ SRS2020 Serial 3434
Permanent link to this record
 

 
Author Estefania Talavera; Carolin Wuerich; Nicolai Petkov; Petia Radeva
Title Topic modelling for routine discovery from egocentric photo-streams Type Journal Article
Year 2020 Publication Pattern Recognition Abbreviated Journal PR
Volume 104 Issue Pages 107330
Keywords Routine; Egocentric vision; Lifestyle; Behaviour analysis; Topic modelling
Abstract Developing tools to understand and visualize lifestyle is of high interest when addressing the improvement of habits and well-being of people. Routine, defined as the usual things that a person does daily, helps describe the individuals’ lifestyle. With this paper, we are the first ones to address the development of novel tools for automatic discovery of routine days of an individual from his/her egocentric images. In the proposed model, sequences of images are firstly characterized by semantic labels detected by pre-trained CNNs. Then, these features are organized in temporal-semantic documents to later be embedded into a topic models space. Finally, Dynamic-Time-Warping and Spectral-Clustering methods are used for final day routine/non-routine discrimination. Moreover, we introduce a new EgoRoutine-dataset, a collection of 104 egocentric days with more than 100.000 images recorded by 7 users. Results show that routine can be discovered and behavioural patterns can be observed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes MILAB; no proj Approved no
Call Number Admin @ si @ TWP2020 Serial 3435
Permanent link to this record
 

 
Author Alejandro Cartas; Petia Radeva; Mariella Dimiccoli
Title Activities of Daily Living Monitoring via a Wearable Camera: Toward Real-World Applications Type Journal Article
Year 2020 Publication IEEE Access Abbreviated Journal ACCESS
Volume 8 Issue Pages 77344 - 77363
Keywords
Abstract Activity recognition from wearable photo-cameras is crucial for lifestyle characterization and health monitoring. However, to enable its wide-spreading use in real-world applications, a high level of generalization needs to be ensured on unseen users. Currently, state-of-the-art methods have been tested only on relatively small datasets consisting of data collected by a few users that are partially seen during training. In this paper, we built a new egocentric dataset acquired by 15 people through a wearable photo-camera and used it to test the generalization capabilities of several state-of-the-art methods for egocentric activity recognition on unseen users and daily image sequences. In addition, we propose several variants to state-of-the-art deep learning architectures, and we show that it is possible to achieve 79.87% accuracy on users unseen during training. Furthermore, to show that the proposed dataset and approach can be useful in real-world applications, where data can be acquired by different wearable cameras and labeled data are scarcely available, we employed a domain adaptation strategy on two egocentric activity recognition benchmark datasets. These experiments show that the model learned with our dataset, can easily be transferred to other domains with a very small amount of labeled data. Taken together, those results show that activity recognition from wearable photo-cameras is mature enough to be tested in real-world applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes MILAB; no proj Approved no
Call Number Admin @ si @ CRD2020 Serial 3436
Permanent link to this record
 

 
Author Ciprian Corneanu; Sergio Escalera; Aleix M. Martinez
Title Computing the Testing Error Without a Testing Set Type Conference Article
Year 2020 Publication 33rd IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Oral. Paper award nominee.
Deep Neural Networks (DNNs) have revolutionized computer vision. We now have DNNs that achieve top (performance) results in many problems, including object recognition, facial expression analysis, and semantic segmentation, to name but a few. The design of the DNNs that achieve top results is, however, non-trivial and mostly done by trailand-error. That is, typically, researchers will derive many DNN architectures (i.e., topologies) and then test them on multiple datasets. However, there are no guarantees that the selected DNN will perform well in the real world. One can use a testing set to estimate the performance gap between the training and testing sets, but avoiding overfitting-to-thetesting-data is almost impossible. Using a sequestered testing dataset may address this problem, but this requires a constant update of the dataset, a very expensive venture. Here, we derive an algorithm to estimate the performance gap between training and testing that does not require any testing dataset. Specifically, we derive a number of persistent topology measures that identify when a DNN is learning to generalize to unseen samples. This allows us to compute the DNN’s testing error on unseen samples, even when we do not have access to them. We provide extensive experimental validation on multiple networks and datasets to demonstrate the feasibility of the proposed approach.
Address Virtual CVPR
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference CVPR
Notes HuPBA; no proj Approved no
Call Number Admin @ si @ CEM2020 Serial 3437
Permanent link to this record
 

 
Author Swathikiran Sudhakaran; Sergio Escalera; Oswald Lanz
Title Gate-Shift Networks for Video Action Recognition Type Conference Article
Year 2020 Publication 33rd IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Deep 3D CNNs for video action recognition are designed to learn powerful representations in the joint spatio-temporal feature space. In practice however, because of the large number of parameters and computations involved, they may under-perform in the lack of sufficiently large datasets for training them at scale. In this paper we introduce spatial gating in spatial-temporal decomposition of 3D kernels. We implement this concept with Gate-Shift Module (GSM). GSM is lightweight and turns a 2D-CNN into a highly efficient spatio-temporal feature extractor. With GSM plugged in, a 2D-CNN learns to adaptively route features through time and combine them, at almost no additional parameters and computational overhead. We perform an extensive evaluation of the proposed module to study its effectiveness in video action recognition, achieving state-of-the-art results on Something Something-V1 and Diving48 datasets, and obtaining competitive results on EPIC-Kitchens with far less model complexity.
Address Virtual CVPR
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference CVPR
Notes HuPBA; no proj Approved no
Call Number Admin @ si @ SEL2020 Serial 3438
Permanent link to this record
 

 
Author Meysam Madadi; Hugo Bertiche; Sergio Escalera
Title SMPLR: Deep learning based SMPL reverse for 3D human pose and shape recovery Type Journal Article
Year 2020 Publication Pattern Recognition Abbreviated Journal PR
Volume 106 Issue Pages 107472
Keywords Deep learning; 3D Human pose; Body shape; SMPL; Denoising autoencoder; Volumetric stack hourglass
Abstract In this paper we propose to embed SMPL within a deep-based model to accurately estimate 3D pose and shape from a still RGB image. We use CNN-based 3D joint predictions as an intermediate representation to regress SMPL pose and shape parameters. Later, 3D joints are reconstructed again in the SMPL output. This module can be seen as an autoencoder where the encoder is a deep neural network and the decoder is SMPL model. We refer to this as SMPL reverse (SMPLR). By implementing SMPLR as an encoder-decoder we avoid the need of complex constraints on pose and shape. Furthermore, given that in-the-wild datasets usually lack accurate 3D annotations, it is desirable to lift 2D joints to 3D without pairing 3D annotations with RGB images. Therefore, we also propose a denoising autoencoder (DAE) module between CNN and SMPLR, able to lift 2D joints to 3D and partially recover from structured error. We evaluate our method on SURREAL and Human3.6M datasets, showing improvement over SMPL-based state-of-the-art alternatives by about 4 and 12 mm, respectively.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes HuPBA; no proj Approved no
Call Number Admin @ si @ MBE2020 Serial 3439
Permanent link to this record
 

 
Author Jun Wan; Guodong Guo; Sergio Escalera; Hugo Jair Escalante; Stan Z. Li
Title Multi-modal Face Presentation Attach Detection Type Book Whole
Year 2020 Publication Synthesis Lectures on Computer Vision Abbreviated Journal
Volume 13 Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes HuPBA Approved no
Call Number Admin @ si @ WGE2020 Serial 3440
Permanent link to this record
 

 
Author Thomas B. Moeslund; Sergio Escalera; Gholamreza Anbarjafari; Kamal Nasrollahi; Jun Wan
Title Statistical Machine Learning for Human Behaviour Analysis Type Journal Article
Year 2020 Publication Entropy Abbreviated Journal ENTROPY
Volume 25 Issue 5 Pages 530
Keywords action recognition; emotion recognition; privacy-aware
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes HuPBA; no proj Approved no
Call Number Admin @ si @ MEA2020 Serial 3441
Permanent link to this record
 

 
Author Razieh Rastgoo; Kourosh Kiani; Sergio Escalera
Title Video-based Isolated Hand Sign Language Recognition Using a Deep Cascaded Model Type Journal Article
Year 2020 Publication Multimedia Tools and Applications Abbreviated Journal MTAP
Volume 79 Issue Pages 22965–22987
Keywords
Abstract In this paper, we propose an efficient cascaded model for sign language recognition taking benefit from spatio-temporal hand-based information using deep learning approaches, especially Single Shot Detector (SSD), Convolutional Neural Network (CNN), and Long Short Term Memory (LSTM), from videos. Our simple yet efficient and accurate model includes two main parts: hand detection and sign recognition. Three types of spatial features, including hand features, Extra Spatial Hand Relation (ESHR) features, and Hand Pose (HP) features, have been fused in the model to feed to LSTM for temporal features extraction. We train SSD model for hand detection using some videos collected from five online sign dictionaries. Our model is evaluated on our proposed dataset (Rastgoo et al., Expert Syst Appl 150: 113336, 2020), including 10’000 sign videos for 100 Persian sign using 10 contributors in 10 different backgrounds, and isoGD dataset. Using the 5-fold cross-validation method, our model outperforms state-of-the-art alternatives in sign language recognition
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes HuPBA; no menciona Approved no
Call Number Admin @ si @ RKE2020b Serial 3442
Permanent link to this record
 

 
Author Raquel Justo; Leila Ben Letaifa; Cristina Palmero; Eduardo Gonzalez-Fraile; Anna Torp Johansen; Alain Vazquez; Gennaro Cordasco; Stephan Schlogl; Begoña Fernandez-Ruanova; Micaela Silva; Sergio Escalera; Mikel de Velasco; Joffre Tenorio-Laranga; Anna Esposito; Maria Korsnes; M. Ines Torres
Title Analysis of the Interaction between Elderly People and a Simulated Virtual Coach, Journal of Ambient Intelligence and Humanized Computing Type Journal Article
Year 2020 Publication Journal of Ambient Intelligence and Humanized Computing Abbreviated Journal AIHC
Volume 11 Issue 12 Pages 6125-6140
Keywords
Abstract The EMPATHIC project develops and validates new interaction paradigms for personalized virtual coaches (VC) to promote healthy and independent aging. To this end, the work presented in this paper is aimed to analyze the interaction between the EMPATHIC-VC and the users. One of the goals of the project is to ensure an end-user driven design, involving senior users from the beginning and during each phase of the project. Thus, the paper focuses on some sessions where the seniors carried out interactions with a Wizard of Oz driven, simulated system. A coaching strategy based on the GROW model was used throughout these sessions so as to guide interactions and engage the elderly with the goals of the project. In this interaction framework, both the human and the system behavior were analyzed. The way the wizard implements the GROW coaching strategy is a key aspect of the system behavior during the interaction. The language used by the virtual agent as well as his or her physical aspect are also important cues that were analyzed. Regarding the user behavior, the vocal communication provides information about the speaker’s emotional status, that is closely related to human behavior and which can be extracted from the speech and language analysis. In the same way, the analysis of the facial expression, gazes and gestures can provide information on the non verbal human communication even when the user is not talking. In addition, in order to engage senior users, their preferences and likes had to be considered. To this end, the effect of the VC on the users was gathered by means of direct questionnaires. These analyses have shown a positive and calm behavior of users when interacting with the simulated virtual coach as well as some difficulties of the system to develop the proposed coaching strategy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes HuPBA; no proj Approved no
Call Number Admin @ si @ JLP2020 Serial 3443
Permanent link to this record
 

 
Author David Berga; Xavier Otazu
Title Modeling Bottom-Up and Top-Down Attention with a Neurodynamic Model of V1 Type Journal Article
Year 2020 Publication Neurocomputing Abbreviated Journal NEUCOM
Volume 417 Issue Pages 270-289
Keywords
Abstract Previous studies suggested that lateral interactions of V1 cells are responsible, among other visual effects, of bottom-up visual attention (alternatively named visual salience or saliency). Our objective is to mimic these connections with a neurodynamic network of firing-rate neurons in order to predict visual attention. Early visual subcortical processes (i.e. retinal and thalamic) are functionally simulated. An implementation of the cortical magnification function is included to define the retinotopical projections towards V1, processing neuronal activity for each distinct view during scene observation. Novel computational definitions of top-down inhibition (in terms of inhibition of return, oculomotor and selection mechanisms), are also proposed to predict attention in Free-Viewing and Visual Search tasks. Results show that our model outpeforms other biologically inspired models of saliency prediction while predicting visual saccade sequences with the same model. We also show how temporal and spatial characteristics of saccade amplitude and inhibition of return can improve prediction of saccades, as well as how distinct search strategies (in terms of feature-selective or category-specific inhibition) can predict attention at distinct image contexts.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes NEUROBIT Approved no
Call Number Admin @ si @ BeO2020c Serial 3444
Permanent link to this record