|   | 
Details
   web
Records Links
Author Ernest Valveny; Ricardo Toledo; Ramon Baldrich; Enric Marti edit  openurl
Title Combining recognition-based in segmentation-based approaches for graphic symol recognition using deformable template matching Type Conference Article
Year 2002 Publication Proceeding of the Second IASTED International Conference Visualization, Imaging and Image Proceesing VIIP 2002 Abbreviated Journal  
Volume Issue Pages 502–507  
Keywords  
Abstract  
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN (up) ISBN Medium  
Area Expedition Conference  
Notes DAG;RV;CAT;IAM;CIC;ADAS Approved no  
Call Number IAM @ iam @ VTB2002 Serial 1660  
Permanent link to this record
 

 
Author Olivier Penacchio; C. Alejandro Parraga edit  url
openurl 
Title What is the best criterion for an efficient design of retinal photoreceptor mosaics? Type Journal Article
Year 2011 Publication Perception Abbreviated Journal PER  
Volume 40 Issue Pages 197  
Keywords  
Abstract The proportions of L, M and S photoreceptors in the primate retina are arguably determined by evolutionary pressure and the statistics of the visual environment. Two information theory-based approaches have been recently proposed for explaining the asymmetrical spatial densities of photoreceptors in humans. In the first approach Garrigan et al (2010 PLoS ONE 6 e1000677), a model for computing the information transmitted by cone arrays which considers the differential blurring produced by the long-wavelength accommodation of the eye’s lens is proposed. Their results explain the sparsity of S-cones but the optimum depends weakly on the L:M cone ratio. In the second approach (Penacchio et al, 2010 Perception 39 ECVP Supplement, 101), we show that human cone arrays make the visual representation scale-invariant, allowing the total entropy of the signal to be preserved while decreasing individual neurons’ entropy in further retinotopic representations. This criterion provides a thorough description of the distribution of L:M cone ratios and does not depend on differential blurring of the signal by the lens. Here, we investigate the similarities and differences of both approaches when applied to the same database. Our results support a 2-criteria optimization in the space of cone ratios whose components are arguably important and mostly unrelated.
[This work was partially funded by projects TIN2010-21771-C02-1 and Consolider-Ingenio 2010-CSD2007-00018 from the Spanish MICINN. CAP was funded by grant RYC-2007-00484]
 
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN (up) ISBN Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number Admin @ si @ PeP2011a Serial 1719  
Permanent link to this record
 

 
Author C. Alejandro Parraga; Olivier Penacchio; Maria Vanrell edit  openurl
Title Retinal Filtering Matches Natural Image Statistics at Low Luminance Levels Type Journal Article
Year 2011 Publication Perception Abbreviated Journal PER  
Volume 40 Issue Pages 96  
Keywords  
Abstract The assumption that the retina’s main objective is to provide a minimum entropy representation to higher visual areas (ie efficient coding principle) allows to predict retinal filtering in space–time and colour (Atick, 1992 Network 3 213–251). This is achieved by considering the power spectra of natural images (which is proportional to 1/f2) and the suppression of retinal and image noise. However, most studies consider images within a limited range of lighting conditions (eg near noon) whereas the visual system’s spatial filtering depends on light intensity and the spatiochromatic properties of natural scenes depend of the time of the day. Here, we explore whether the dependence of visual spatial filtering on luminance match the changes in power spectrum of natural scenes at different times of the day. Using human cone-activation based naturalistic stimuli (from the Barcelona Calibrated Images Database), we show that for a range of luminance levels, the shape of the retinal CSF reflects the slope of the power spectrum at low spatial frequencies. Accordingly, the retina implements the filtering which best decorrelates the input signal at every luminance level. This result is in line with the body of work that places efficient coding as a guiding neural principle.  
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN (up) ISBN Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number Admin @ si @ PPV2011 Serial 1720  
Permanent link to this record
 

 
Author Maria Vanrell; Naila Murray; Robert Benavente; C. Alejandro Parraga; Xavier Otazu; Ramon Baldrich edit   pdf
url  isbn
openurl 
Title Perception Based Representations for Computational Colour Type Conference Article
Year 2011 Publication 3rd International Workshop on Computational Color Imaging Abbreviated Journal  
Volume 6626 Issue Pages 16-30  
Keywords colour perception, induction, naming, psychophysical data, saliency, segmentation  
Abstract The perceived colour of a stimulus is dependent on multiple factors stemming out either from the context of the stimulus or idiosyncrasies of the observer. The complexity involved in combining these multiple effects is the main reason for the gap between classical calibrated colour spaces from colour science and colour representations used in computer vision, where colour is just one more visual cue immersed in a digital image where surfaces, shadows and illuminants interact seemingly out of control. With the aim to advance a few steps towards bridging this gap we present some results on computational representations of colour for computer vision. They have been developed by introducing perceptual considerations derived from the interaction of the colour of a point with its context. We show some techniques to represent the colour of a point influenced by assimilation and contrast effects due to the image surround and we show some results on how colour saliency can be derived in real images. We outline a model for automatic assignment of colour names to image points directly trained on psychophysical data. We show how colour segments can be perceptually grouped in the image by imposing shading coherence in the colour space.  
Address Milan, Italy  
Corporate Author Thesis  
Publisher Springer-Verlag Place of Publication Editor Raimondo Schettini, Shoji Tominaga, Alain Trémeau  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title LNCS  
Series Volume Series Issue Edition  
ISSN (up) ISBN 978-3-642-20403-6 Medium  
Area Expedition Conference CCIW  
Notes CIC Approved no  
Call Number Admin @ si @ VMB2011 Serial 1733  
Permanent link to this record
 

 
Author Joost Van de Weijer; Shida Beigpour edit   pdf
url  isbn
openurl 
Title The Dichromatic Reflection Model: Future Research Directions and Applications Type Conference Article
Year 2011 Publication International Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications Abbreviated Journal  
Volume Issue Pages  
Keywords dblp  
Abstract The dichromatic reflection model (DRM) predicts that color distributions form a parallelogram in color space, whose shape is defined by the body reflectance and the illuminant color. In this paper we resume the assumptions which led to the DRM and shortly recall two of its main applications domains: color image segmentation and photometric invariant feature computation. After having introduced the model we discuss several limitations of the theory, especially those which are raised once working on real-world uncalibrated images. In addition, we summerize recent extensions of the model which allow to handle more complicated light interactions. Finally, we suggest some future research directions which would further extend its applicability.  
Address Algarve, Portugal  
Corporate Author Thesis  
Publisher SciTePress Place of Publication Editor Mestetskiy, Leonid and Braz, José  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN (up) ISBN 978-989-8425-47-8 Medium  
Area Expedition Conference VISIGRAPP  
Notes CIC Approved no  
Call Number Admin @ si @ WeB2011 Serial 1778  
Permanent link to this record
 

 
Author Javier Vazquez edit  openurl
Title Colour Constancy in Natural Through Colour Naming and Sensor Sharpening Type Book Whole
Year 2011 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
Volume Issue Pages  
Keywords  
Abstract Colour is derived from three physical properties: incident light, object reflectance and sensor sensitivities. Incident light varies under natural conditions; hence, recovering scene illuminant is an important issue in computational colour. One way to deal with this problem under calibrated conditions is by following three steps, 1) building a narrow-band sensor basis to accomplish the diagonal model, 2) building a feasible set of illuminants, and 3) defining criteria to select the best illuminant. In this work we focus on colour constancy for natural images by introducing perceptual criteria in the first and third stages.
To deal with the illuminant selection step, we hypothesise that basic colour categories can be used as anchor categories to recover the best illuminant. These colour names are related to the way that the human visual system has evolved to encode relevant natural colour statistics. Therefore the recovered image provides the best representation of the scene labelled with the basic colour terms. We demonstrate with several experiments how this selection criterion achieves current state-of-art results in computational colour constancy. In addition to this result, we psychophysically prove that usual angular error used in colour constancy does not correlate with human preferences, and we propose a new perceptual colour constancy evaluation.
The implementation of this selection criterion strongly relies on the use of a diagonal
model for illuminant change. Consequently, the second contribution focuses on building an appropriate narrow-band sensor basis to represent natural images. We propose to use the spectral sharpening technique to compute a unique narrow-band basis optimised to represent a large set of natural reflectances under natural illuminants and given in the basis of human cones. The proposed sensors allow predicting unique hues and the World colour Survey data independently of the illuminant by using a compact singularity function. Additionally, we studied different families of sharp sensors to minimise different perceptual measures. This study brought us to extend the spherical sampling procedure from 3D to 6D.
Several research lines still remain open. One natural extension would be to measure the
effects of using the computed sharp sensors on the category hypothesis, while another might be to insert spatial contextual information to improve category hypothesis. Finally, much work still needs to be done to explore how individual sensors can be adjusted to the colours in a scene.
 
Address  
Corporate Author Thesis Ph.D. thesis  
Publisher Ediciones Graficas Rey Place of Publication Editor Maria Vanrell;Graham D. Finlayson  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN (up) ISBN Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number Admin @ si @ Vaz2011a Serial 1785  
Permanent link to this record
 

 
Author Jaime Moreno edit  url
isbn  openurl
Title Perceptual Criteria on Image Compresions Type Book Whole
Year 2011 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
Volume Issue Pages  
Keywords  
Abstract Nowadays, digital images are used in many areas in everyday life, but they tend to be big. This increases amount of information leads us to the problem of image data storage. For example, it is common to have a representation a color pixel as a 24-bit number, where the channels red, green, and blue employ 8 bits each. In consequence, this kind of color pixel can specify one of 224 ¼ 16:78 million colors. Therefore, an image at a resolution of 512 £ 512 that allocates 24 bits per pixel, occupies 786,432 bytes. That is why image compression is important. An important feature of image compression is that it can be lossy or lossless. A compressed image is acceptable provided these losses of image information are not perceived by the eye. It is possible to assume that a portion of this information is redundant. Lossless Image Compression is defined as to mathematically decode the same image which was encoded. In Lossy Image Compression needs to identify two features inside the image: the redundancy and the irrelevancy of information. Thus, lossy compression modifies the image data in such a way when they are encoded and decoded, the recovered image is similar enough to the original one. How similar is the recovered image in comparison to the original image is defined prior to the compression process, and it depends on the implementation to be performed. In lossy compression, current image compression schemes remove information considered irrelevant by using mathematical criteria. One of the problems of these schemes is that although the numerical quality of the compressed image is low, it shows a high visual image quality, e.g. it does not show a lot of visible artifacts. It is because these mathematical criteria, used to remove information, do not take into account if the viewed information is perceived by the Human Visual System. Therefore, the aim of an image compression scheme designed to obtain images that do not show artifacts although their numerical quality can be low, is to eliminate the information that is not visible by the Human Visual System. Hence, this Ph.D. thesis proposes to exploit the visual redundancy existing in an image by reducing those features that can be unperceivable for the Human Visual System. First, we define an image quality assessment, which is highly correlated with the psychophysical experiments performed by human observers. The proposed CwPSNR metrics weights the well-known PSNR by using a particular perceptual low level model of the Human Visual System, e.g. the Chromatic Induction Wavelet Model (CIWaM). Second, we propose an image compression algorithm (called Hi-SET), which exploits the high correlation and self-similarity of pixels in a given area or neighborhood by means of a fractal function. Hi-SET possesses the main features that modern image compressors have, that is, it is an embedded coder, which allows a progressive transmission. Third, we propose a perceptual quantizer (½SQ), which is a modification of the uniform scalar quantizer. The ½SQ is applied to a pixel set in a certain Wavelet sub-band, that is, a global quantization. Unlike this, the proposed modification allows to perform a local pixel-by-pixel forward and inverse quantization, introducing into this process a perceptual distortion which depends on the surround spatial information of the pixel. Combining ½SQ method with the Hi-SET image compressor, we define a perceptual image compressor, called ©SET. Finally, a coding method for Region of Interest areas is presented, ½GBbBShift, which perceptually weights pixels into these areas and maintains only the more important perceivable features in the rest of the image. Results presented in this report show that CwPSNR is the best-ranked image quality method when it is applied to the most common image compression distortions such as JPEG and JPEG2000. CwPSNR shows the best correlation with the judgement of human observers, which is based on the results of psychophysical experiments obtained for relevant image quality databases such as TID2008, LIVE, CSIQ and IVC. Furthermore, Hi-SET coder obtains better results both for compression ratios and perceptual image quality than the JPEG2000 coder and other coders that use a Hilbert Fractal for image compression. Hence, when the proposed perceptual quantization is introduced to Hi-SET coder, our compressor improves its numerical and perceptual e±ciency. When ½GBbBShift method applied to Hi-SET is compared against MaxShift method applied to the JPEG2000 standard and Hi-SET, the images coded by our ROI method get the best results when the overall image quality is estimated. Both the proposed perceptual quantization and the ½GBbBShift method are generalized algorithms that can be applied to other Wavelet based image compression algorithms such as JPEG2000, SPIHT or SPECK.  
Address  
Corporate Author Thesis Ph.D. thesis  
Publisher Ediciones Graficas Rey Place of Publication Editor Xavier Otazu  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN (up) ISBN 978-84-938351-3-2 Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number Admin @ si @ Mor2011 Serial 1786  
Permanent link to this record
 

 
Author Eduard Vazquez edit  openurl
Title Unsupervised image segmentation based on material reflectance description and saliency Type Book Whole
Year 2011 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
Volume Issue Pages  
Keywords  
Abstract Image segmentations aims to partition an image into a set of non-overlapped regions, called segments. Despite the simplicity of the definition, image segmentation raises as a very complex problem in all its stages. The definition of segment is still unclear. When asking to a human to perform a segmentation, this person segments at different levels of abstraction. Some segments might be a single, well-defined texture whereas some others correspond with an object in the scene which might including multiple textures and colors. For this reason, segmentation is divided in bottom-up segmentation and top-down segmentation. Bottom up-segmentation is problem independent, that is, focused on general properties of the images such as textures or illumination. Top-down segmentation is a problem-dependent approach which looks for specific entities in the scene, such as known objects. This work is focused on bottom-up segmentation. Beginning from the analysis of the lacks of current methods, we propose an approach called RAD. Our approach overcomes the main shortcomings of those methods which use the physics of the light to perform the segmentation. RAD is a topological approach which describes a single-material reflectance. Afterwards, we cope with one of the main problems in image segmentation: non supervised adaptability to image content. To yield a non-supervised method, we use a model of saliency yet presented in this thesis. It computes the saliency of the chromatic transitions of an image by means of a statistical analysis of the images derivatives. This method of saliency is used to build our final approach of segmentation: spRAD. This method is a non-supervised segmentation approach. Our saliency approach has been validated with a psychophysical experiment as well as computationally, overcoming a state-of-the-art saliency method. spRAD also outperforms state-of-the-art segmentation techniques as results obtained with a widely-used segmentation dataset show  
Address  
Corporate Author Thesis Ph.D. thesis  
Publisher Place of Publication Editor Ramon Baldrich  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN (up) ISBN Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number Admin @ si @ Vaz2011b Serial 1835  
Permanent link to this record
 

 
Author Fahad Shahbaz Khan edit  openurl
Title Coloring bag-of-words based image representations Type Book Whole
Year 2011 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
Volume Issue Pages  
Keywords  
Abstract Put succinctly, the bag-of-words based image representation is the most successful approach for object and scene recognition. Within the bag-of-words framework the optimal fusion of multiple cues, such as shape, texture and color, still remains an active research domain. There exist two main approaches to combine color and shape information within the bag-of-words framework. The first approach called, early fusion, fuses color and shape at the feature level as a result of which a joint colorshape vocabulary is produced. The second approach, called late fusion, concatenates histogram representation of both color and shape, obtained independently. In the first part of this thesis, we analyze the theoretical implications of both early and late feature fusion. We demonstrate that both these approaches are suboptimal for a subset of object categories. Consequently, we propose a novel method for recognizing object categories when using multiple cues by separately processing the shape and color cues and combining them by modulating the shape features by category specific color attention. Color is used to compute bottom-up and top-down attention maps. Subsequently, the color attention maps are used to modulate the weights of the shape features. Shape features are given more weight in regions with higher attention and vice versa. The approach is tested on several benchmark object recognition data sets and the results clearly demonstrate the effectiveness of our proposed method. In the second part of the thesis, we investigate the problem of obtaining compact spatial pyramid representations for object and scene recognition. Spatial pyramids have been successfully applied to incorporate spatial information into bag-of-words based image representation. However, a major drawback of spatial pyramids is that it leads to high dimensional image representations. We present a novel framework for obtaining compact pyramid representation. The approach reduces the size of a high dimensional pyramid representation upto an order of magnitude without any significant reduction in accuracy. Moreover, we also investigate the optimal combination of multiple features such as color and shape within the context of our compact pyramid representation. Finally, we describe a novel technique to build discriminative visual words from multiple cues learned independently from training images. To this end, we use an information theoretic vocabulary compression technique to find discriminative combinations of visual cues and the resulting visual vocabulary is compact, has the cue binding property, and supports individual weighting of cues in the final image representation. The approach is tested on standard object recognition data sets. The results obtained clearly demonstrate the effectiveness of our approach.  
Address  
Corporate Author Thesis Ph.D. thesis  
Publisher Place of Publication Editor Joost Van de Weijer;Maria Vanrell  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN (up) ISBN Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number Admin @ si @ Kha2011 Serial 1838  
Permanent link to this record
 

 
Author Fahad Shahbaz Khan; Joost Van de Weijer; Andrew Bagdanov; Maria Vanrell edit   pdf
url  openurl
Title Portmanteau Vocabularies for Multi-Cue Image Representation Type Conference Article
Year 2011 Publication 25th Annual Conference on Neural Information Processing Systems Abbreviated Journal  
Volume Issue Pages  
Keywords  
Abstract We describe a novel technique for feature combination in the bag-of-words model of image classification. Our approach builds discriminative compound words from primitive cues learned independently from training images. Our main observation is that modeling joint-cue distributions independently is more statistically robust for typical classification problems than attempting to empirically estimate the dependent, joint-cue distribution directly. We use Information theoretic vocabulary compression to find discriminative combinations of cues and the resulting vocabulary of portmanteau words is compact, has the cue binding property, and supports individual weighting of cues in the final image representation. State-of-the-art results on both the Oxford Flower-102 and Caltech-UCSD Bird-200 datasets demonstrate the effectiveness of our technique compared to other, significantly more complex approaches to multi-cue image representation  
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN (up) ISBN Medium  
Area Expedition Conference NIPS  
Notes CIC Approved no  
Call Number Admin @ si @ KWB2011 Serial 1865  
Permanent link to this record
 

 
Author Naila Murray; Sandra Skaff; Luca Marchesotti; Florent Perronnin edit   pdf
url  doi
isbn  openurl
Title Towards Automatic Concept Transfer Type Conference Article
Year 2011 Publication Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Non-Photorealistic Animation and Rendering Abbreviated Journal  
Volume Issue Pages 167.176  
Keywords chromatic modeling, color concepts, color transfer, concept transfer  
Abstract This paper introduces a novel approach to automatic concept transfer; examples of concepts are “romantic”, “earthy”, and “luscious”. The approach modifies the color content of an input image given only a concept specified by a user in natural language, thereby requiring minimal user input. This approach is particularly useful for users who are aware of the message they wish to convey in the transferred image while being unsure of the color combination needed to achieve the corresponding transfer. The user may adjust the intensity level of the concept transfer to his/her liking with a single parameter. The proposed approach uses a convex clustering algorithm, with a novel pruning mechanism, to automatically set the complexity of models of chromatic content. It also uses the Earth-Mover's Distance to compute a mapping between the models of the input image and the target chromatic concept. Results show that our approach yields transferred images which effectively represent concepts, as confirmed by a user study.  
Address  
Corporate Author Thesis  
Publisher ACM Press Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN (up) ISBN 978-1-4503-0907-3 Medium  
Area Expedition Conference NPAR  
Notes CIC Approved no  
Call Number Admin @ si @ MSM2011 Serial 1866  
Permanent link to this record
 

 
Author Jordi Roca; C. Alejandro Parraga; Maria Vanrell edit  url
openurl 
Title Categorical Focal Colours are Structurally Invariant Under Illuminant Changes Type Conference Article
Year 2011 Publication European Conference on Visual Perception Abbreviated Journal  
Volume Issue Pages 196  
Keywords  
Abstract The visual system perceives the colour of surfaces approximately constant under changes of illumination. In this work, we investigate how stable is the perception of categorical \“focal\” colours and their interrelations with varying illuminants and simple chromatic backgrounds. It has been proposed that best examples of colour categories across languages cluster in small regions of the colour space and are restricted to a set of 11 basic terms (Kay and Regier, 2003 Proceedings of the National Academy of Sciences of the USA 100 9085\–9089). Following this, we developed a psychophysical paradigm that exploits the ability of subjects to reliably reproduce the most representative examples of each category, adjusting multiple test patches embedded in a coloured Mondrian. The experiment was run on a CRT monitor (inside a dark room) under various simulated illuminants. We modelled the recorded data for each subject and adapted state as a 3D interconnected structure (graph) in Lab space. The graph nodes were the subject\’s focal colours at each adaptation state. The model allowed us to get a better distance measure between focal structures under different illuminants. We found that perceptual focal structures tend to be preserved better than the structures of the physical \“ideal\” colours under illuminant changes.  
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Perception 40 Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN (up) ISBN Medium  
Area Expedition Conference ECVP  
Notes CIC Approved no  
Call Number Admin @ si @ RPV2011 Serial 1867  
Permanent link to this record
 

 
Author Naila Murray edit  openurl
Title Perceptual Feature Detection Type Report
Year 2009 Publication CVC Technical Report Abbreviated Journal  
Volume 131 Issue Pages  
Keywords  
Abstract  
Address  
Corporate Author Computer Vision Center Thesis Master's thesis  
Publisher Place of Publication Bellaterra, Barcelona Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN (up) ISBN Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number Admin @ si @ Mur2009 Serial 2390  
Permanent link to this record
 

 
Author Maria del Camp Davesa edit  openurl
Title Human action categorization in image sequences Type Report
Year 2011 Publication CVC Technical Report Abbreviated Journal  
Volume 169 Issue Pages  
Keywords  
Abstract  
Address Bellaterra (Spain)  
Corporate Author Computer Vision Center Thesis Master's thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN (up) ISBN Medium  
Area Expedition Conference  
Notes CiC;CIC Approved no  
Call Number Admin @ si @ Dav2011 Serial 1934  
Permanent link to this record
 

 
Author Jordi Roca; C. Alejandro Parraga; Maria Vanrell edit   pdf
doi  openurl
Title Chromatic settings and the structural color constancy index Type Journal Article
Year 2013 Publication Journal of Vision Abbreviated Journal JV  
Volume 13 Issue 4-3 Pages 1-26  
Keywords  
Abstract Color constancy is usually measured by achromatic setting, asymmetric matching, or color naming paradigms, whose results are interpreted in terms of indexes and models that arguably do not capture the full complexity of the phenomenon. Here we propose a new paradigm, chromatic setting, which allows a more comprehensive characterization of color constancy through the measurement of multiple points in color space under immersive adaptation. We demonstrated its feasibility by assessing the consistency of subjects' responses over time. The paradigm was applied to two-dimensional (2-D) Mondrian stimuli under three different illuminants, and the results were used to fit a set of linear color constancy models. The use of multiple colors improved the precision of more complex linear models compared to the popular diagonal model computed from gray. Our results show that a diagonal plus translation matrix that models mechanisms other than cone gain might be best suited to explain the phenomenon. Additionally, we calculated a number of color constancy indices for several points in color space, and our results suggest that interrelations among colors are not as uniform as previously believed. To account for this variability, we developed a new structural color constancy index that takes into account the magnitude and orientation of the chromatic shift in addition to the interrelations among colors and memory effects.  
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN (up) ISBN Medium  
Area Expedition Conference  
Notes CIC; 600.052; 600.051; 605.203 Approved no  
Call Number Admin @ si @ RPV2013 Serial 2288  
Permanent link to this record
 

 
Author Albert Gordo edit  openurl
Title A Cyclic Page Layout Descriptor for Document Classification & Retrieval Type Report
Year 2009 Publication CVC Technical Report Abbreviated Journal  
Volume 128 Issue Pages  
Keywords  
Abstract  
Address  
Corporate Author Computer Vision Center Thesis Master's thesis  
Publisher Place of Publication Bellaterra, Barcelona Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN (up) ISBN Medium  
Area Expedition Conference  
Notes CIC;DAG Approved no  
Call Number Admin @ si @ Gor2009 Serial 2387  
Permanent link to this record
 

 
Author Javier Vazquez; J. Kevin O'Regan; Maria Vanrell; Graham D. Finlayson edit  url
doi  openurl
Title A new spectrally sharpened basis to predict colour naming, unique hues, and hue cancellation Type Journal Article
Year 2012 Publication Journal of Vision Abbreviated Journal VSS  
Volume 12 Issue 6 (7) Pages 1-14  
Keywords  
Abstract When light is reflected off a surface, there is a linear relation between the three human photoreceptor responses to the incoming light and the three photoreceptor responses to the reflected light. Different colored surfaces have different linear relations. Recently, Philipona and O'Regan (2006) showed that when this relation is singular in a mathematical sense, then the surface is perceived as having a highly nameable color. Furthermore, white light reflected by that surface is perceived as corresponding precisely to one of the four psychophysically measured unique hues. However, Philipona and O'Regan's approach seems unrelated to classical psychophysical models of color constancy. In this paper we make this link. We begin by transforming cone sensors to spectrally sharpened counterparts. In sharp color space, illumination change can be modeled by simple von Kries type scalings of response values within each of the spectrally sharpened response channels. In this space, Philipona and O'Regan's linear relation is captured by a simple Land-type color designator defined by dividing reflected light by incident light. This link between Philipona and O'Regan's theory and Land's notion of color designator gives the model biological plausibility. We then show that Philipona and O'Regan's singular surfaces are surfaces which are very close to activating only one or only two of such newly defined spectrally sharpened sensors, instead of the usual three. Closeness to zero is quantified in a new simplified measure of singularity which is also shown to relate to the chromaticness of colors. As in Philipona and O'Regan's original work, our new theory accounts for a large variety of psychophysical color data.  
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN (up) ISBN Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number Admin @ si @ VOV2012 Serial 1998  
Permanent link to this record
 

 
Author Naila Murray; Luca Marchesotti; Florent Perronnin edit   pdf
url  doi
isbn  openurl
Title Learning to Rank Images using Semantic and Aesthetic Labels Type Conference Article
Year 2012 Publication 23rd British Machine Vision Conference Abbreviated Journal  
Volume Issue Pages 110.1-110.10  
Keywords  
Abstract Most works on image retrieval from text queries have addressed the problem of retrieving semantically relevant images. However, the ability to assess the aesthetic quality of an image is an increasingly important differentiating factor for search engines. In this work, given a semantic query, we are interested in retrieving images which are semantically relevant and score highly in terms of aesthetics/visual quality. We use large-margin classifiers and rankers to learn statistical models capable of ordering images based on the aesthetic and semantic information. In particular, we compare two families of approaches: while the first one attempts to learn a single ranker which takes into account both semantic and aesthetic information, the second one learns separate semantic and aesthetic models. We carry out a quantitative and qualitative evaluation on a recently-published large-scale dataset and we show that the second family of techniques significantly outperforms the first one.  
Address Guildford, London  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN (up) ISBN 1-901725-46-4 Medium  
Area Expedition Conference BMVC  
Notes CIC Approved no  
Call Number Admin @ si @ MMP2012b Serial 2027  
Permanent link to this record