|   | 
Details
   web
Records
Author Lluis Pere de las Heras; Ernest Valveny; Gemma Sanchez
Title Combining structural and statistical strategies for unsupervised wall detection in floor plans Type Conference Article
Year 2013 Publication 10th IAPR International Workshop on Graphics Recognition Abbreviated Journal
Volume Issue Pages
Keywords
Abstract This paper presents an evolution of the first unsupervised wall segmentation method in floor plans, that was presented by the authors in [1]. This first approach, contrarily to the existing ones, is able to segment walls independently to their notation and without the need of any pre-annotated data
to learn their visual appearance. Despite the good performance of the first approach, some specific cases, such as curved shaped walls, were not correctly segmented since they do not agree the strict structural assumptions that guide the whole methodology in order to be able to learn, in an unsupervised way, the structure of a wall. In this paper, we refine this strategy by dividing the
process in two steps. In a first step, potential wall segments are extracted unsupervisedly using a modification of [1], by restricting even more the areas considered as walls in a first moment. In a second step, these segments are used to learn and spot lost instances based on a modified version of [2], also presented by the authors. The presented combined method have been tested on
4 datasets with different notations and compared with the stateof-the-art applyed on the same datasets. The results show its adaptability to different wall notations and shapes, significantly outperforming the original approach.
Address Bethlehem; PA; USA; August 2013
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN (down) Medium
Area Expedition Conference GREC
Notes DAG; 600.045 Approved no
Call Number Admin @ si @ HVS2013a Serial 2321
Permanent link to this record
 

 
Author Juan Ramon Terven Salinas; Joaquin Salas; Bogdan Raducanu
Title New Opportunities for Computer Vision-Based Assistive Technology Systems for the Visually Impaired Type Journal Article
Year 2014 Publication Computer Abbreviated Journal COMP
Volume 47 Issue 4 Pages 52-58
Keywords
Abstract Computing advances and increased smartphone use gives technology system designers greater flexibility in exploiting computer vision to support visually impaired users. Understanding these users' needs will certainly provide insight for the development of improved usability of computing devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9162 ISBN (down) Medium
Area Expedition Conference
Notes LAMP; Approved no
Call Number Admin @ si @ TSR2014a Serial 2317
Permanent link to this record
 

 
Author Dimosthenis Karatzas; Faisal Shafait; Seiichi Uchida; Masakazu Iwamura; Lluis Gomez; Sergi Robles; Joan Mas; David Fernandez; Jon Almazan; Lluis Pere de las Heras
Title ICDAR 2013 Robust Reading Competition Type Conference Article
Year 2013 Publication 12th International Conference on Document Analysis and Recognition Abbreviated Journal
Volume Issue Pages 1484-1493
Keywords
Abstract This report presents the final results of the ICDAR 2013 Robust Reading Competition. The competition is structured in three Challenges addressing text extraction in different application domains, namely born-digital images, real scene images and real-scene videos. The Challenges are organised around specific tasks covering text localisation, text segmentation and word recognition. The competition took place in the first quarter of 2013, and received a total of 42 submissions over the different tasks offered. This report describes the datasets and ground truth specification, details the performance evaluation protocols used and presents the final results along with a brief summary of the participating methods.
Address Washington; USA; August 2013
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1520-5363 ISBN (down) Medium
Area Expedition Conference ICDAR
Notes DAG; 600.056 Approved no
Call Number Admin @ si @ KSU2013 Serial 2318
Permanent link to this record
 

 
Author Lluis Gomez
Title Perceptual Organization for Text Extraction in Natural Scenes Type Report
Year 2012 Publication CVC Technical Report Abbreviated Journal
Volume 173 Issue Pages
Keywords
Abstract
Address Bellaterra
Corporate Author Thesis Master's thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN (down) Medium
Area Expedition Conference
Notes DAG Approved no
Call Number Admin @ si @ Gom2012 Serial 2309
Permanent link to this record
 

 
Author Lluis Gomez; Dimosthenis Karatzas
Title Multi-script Text Extraction from Natural Scenes Type Conference Article
Year 2013 Publication 12th International Conference on Document Analysis and Recognition Abbreviated Journal
Volume Issue Pages 467-471
Keywords
Abstract Scene text extraction methodologies are usually based in classification of individual regions or patches, using a priori knowledge for a given script or language. Human perception of text, on the other hand, is based on perceptual organisation through which text emerges as a perceptually significant group of atomic objects. Therefore humans are able to detect text even in languages and scripts never seen before. In this paper, we argue that the text extraction problem could be posed as the detection of meaningful groups of regions. We present a method built around a perceptual organisation framework that exploits collaboration of proximity and similarity laws to create text-group hypotheses. Experiments demonstrate that our algorithm is competitive with state of the art approaches on a standard dataset covering text in variable orientations and two languages.
Address Washington; USA; August 2013
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1520-5363 ISBN (down) Medium
Area Expedition Conference ICDAR
Notes DAG; 600.056; 601.158; 601.197 Approved no
Call Number Admin @ si @ GoK2013 Serial 2310
Permanent link to this record
 

 
Author Bogdan Raducanu; Fadi Dornaika
Title Embedding new observations via sparse-coding for non-linear manifold learning Type Journal Article
Year 2014 Publication Pattern Recognition Abbreviated Journal PR
Volume 47 Issue 1 Pages 480-492
Keywords
Abstract Non-linear dimensionality reduction techniques are affected by two critical aspects: (i) the design of the adjacency graphs, and (ii) the embedding of new test data-the out-of-sample problem. For the first aspect, the proposed solutions, in general, were heuristically driven. For the second aspect, the difficulty resides in finding an accurate mapping that transfers unseen data samples into an existing manifold. Past works addressing these two aspects were heavily parametric in the sense that the optimal performance is only achieved for a suitable parameter choice that should be known in advance. In this paper, we demonstrate that the sparse representation theory not only serves for automatic graph construction as shown in recent works, but also represents an accurate alternative for out-of-sample embedding. Considering for a case study the Laplacian Eigenmaps, we applied our method to the face recognition problem. To evaluate the effectiveness of the proposed out-of-sample embedding, experiments are conducted using the K-nearest neighbor (KNN) and Kernel Support Vector Machines (KSVM) classifiers on six public face datasets. The experimental results show that the proposed model is able to achieve high categorization effectiveness as well as high consistency with non-linear embeddings/manifolds obtained in batch modes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN (down) Medium
Area Expedition Conference
Notes LAMP; Approved no
Call Number Admin @ si @ RaD2013b Serial 2316
Permanent link to this record
 

 
Author Albert Gordo; Florent Perronnin; Ernest Valveny
Title Large-scale document image retrieval and classification with runlength histograms and binary embeddings Type Journal Article
Year 2013 Publication Pattern Recognition Abbreviated Journal PR
Volume 46 Issue 7 Pages 1898-1905
Keywords visual document descriptor; compression; large-scale; retrieval; classification
Abstract We present a new document image descriptor based on multi-scale runlength
histograms. This descriptor does not rely on layout analysis and can be
computed efficiently. We show how this descriptor can achieve state-of-theart
results on two very different public datasets in classification and retrieval
tasks. Moreover, we show how we can compress and binarize these descriptors
to make them suitable for large-scale applications. We can achieve state-ofthe-
art results in classification using binary descriptors of as few as 16 to 64
bits.
Address
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-3203 ISBN (down) Medium
Area Expedition Conference
Notes DAG; 600.042; 600.045; 605.203 Approved no
Call Number Admin @ si @ GPV2013 Serial 2306
Permanent link to this record
 

 
Author Albert Gordo; Alicia Fornes; Ernest Valveny
Title Writer identification in handwritten musical scores with bags of notes Type Journal Article
Year 2013 Publication Pattern Recognition Abbreviated Journal PR
Volume 46 Issue 5 Pages 1337-1345
Keywords
Abstract Writer Identification is an important task for the automatic processing of documents. However, the identification of the writer in graphical documents is still challenging. In this work, we adapt the Bag of Visual Words framework to the task of writer identification in handwritten musical scores. A vanilla implementation of this method already performs comparably to the state-of-the-art. Furthermore, we analyze the effect of two improvements of the representation: a Bhattacharyya embedding, which improves the results at virtually no extra cost, and a Fisher Vector representation that very significantly improves the results at the cost of a more complex and costly representation. Experimental evaluation shows results more than 20 points above the state-of-the-art in a new, challenging dataset.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-3203 ISBN (down) Medium
Area Expedition Conference
Notes DAG Approved no
Call Number Admin @ si @ GFV2013 Serial 2307
Permanent link to this record
 

 
Author A. M. Here; B. C. Lopez; Debora Gil; J. J. Camarero; Jordi Martinez-Vilalta
Title A new software to analyse wood anatomical features in conifer species Type Conference Article
Year 2013 Publication International Symposium on Wood Structure in Plant Biology and Ecology Abbreviated Journal
Volume Issue Pages
Keywords
Abstract International Symposium on Wood Structure in Plant Biology and Ecology
Address Naples; Italy; March 2013
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN (down) Medium
Area Expedition Conference WSE
Notes IAM Approved no
Call Number Admin @ si @ HLG2013 Serial 2303
Permanent link to this record
 

 
Author Enric Marti; Ferran Poveda; Antoni Gurgui; Jaume Rocarias; Debora Gil
Title Una propuesta de seguimiento, tutorías on line y evaluación en la metodología de Aprendizaje Basado en Proyectos Type Miscellaneous
Year 2013 Publication IV Congreso Internacional UNIVEST Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Poster
Address Girona
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN (down) Medium
Area Expedition Conference UNIVEST
Notes IAM Approved no
Call Number Admin @ si @ MPG2013a Serial 2304
Permanent link to this record
 

 
Author Sergio Vera; Miguel Angel Gonzalez Ballester; Debora Gil
Title Volumetric Anatomical Parameterization and Meshing for Inter-patient Liver Coordinate System Deffinition Type Conference Article
Year 2013 Publication 16th International Conference on Medical Image Computing and Computer Assisted Intervention Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address Nagoya; Japan; September 2013
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN (down) Medium
Area Expedition Conference MICCAI
Notes IAM Approved no
Call Number Admin @ si @ VGG2013 Serial 2301
Permanent link to this record
 

 
Author Volkmar Frinken; Andreas Fischer; Markus Baumgartner; Horst Bunke
Title Keyword spotting for self-training of BLSTM NN based handwriting recognition systems Type Journal Article
Year 2014 Publication Pattern Recognition Abbreviated Journal PR
Volume 47 Issue 3 Pages 1073-1082
Keywords Document retrieval; Keyword spotting; Handwriting recognition; Neural networks; Semi-supervised learning
Abstract The automatic transcription of unconstrained continuous handwritten text requires well trained recognition systems. The semi-supervised paradigm introduces the concept of not only using labeled data but also unlabeled data in the learning process. Unlabeled data can be gathered at little or not cost. Hence it has the potential to reduce the need for labeling training data, a tedious and costly process. Given a weak initial recognizer trained on labeled data, self-training can be used to recognize unlabeled data and add words that were recognized with high confidence to the training set for re-training. This process is not trivial and requires great care as far as selecting the elements that are to be added to the training set is concerned. In this paper, we propose to use a bidirectional long short-term memory neural network handwritten recognition system for keyword spotting in order to select new elements. A set of experiments shows the high potential of self-training for bootstrapping handwriting recognition systems, both for modern and historical handwritings, and demonstrate the benefits of using keyword spotting over previously published self-training schemes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN (down) Medium
Area Expedition Conference
Notes DAG; 600.077; 602.101 Approved no
Call Number Admin @ si @ FFB2014 Serial 2297
Permanent link to this record
 

 
Author Veronica Romero; Alicia Fornes; Nicolas Serrano; Joan Andreu Sanchez; A.H. Toselli; Volkmar Frinken; E. Vidal; Josep Llados
Title The ESPOSALLES database: An ancient marriage license corpus for off-line handwriting recognition Type Journal Article
Year 2013 Publication Pattern Recognition Abbreviated Journal PR
Volume 46 Issue 6 Pages 1658-1669
Keywords
Abstract Historical records of daily activities provide intriguing insights into the life of our ancestors, useful for demography studies and genealogical research. Automatic processing of historical documents, however, has mostly been focused on single works of literature and less on social records, which tend to have a distinct layout, structure, and vocabulary. Such information is usually collected by expert demographers that devote a lot of time to manually transcribe them. This paper presents a new database, compiled from a marriage license books collection, to support research in automatic handwriting recognition for historical documents containing social records. Marriage license books are documents that were used for centuries by ecclesiastical institutions to register marriage licenses. Books from this collection are handwritten and span nearly half a millennium until the beginning of the 20th century. In addition, a study is presented about the capability of state-of-the-art handwritten text recognition systems, when applied to the presented database. Baseline results are reported for reference in future studies.
Address
Corporate Author Thesis
Publisher Elsevier Science Inc. New York, NY, USA Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-3203 ISBN (down) Medium
Area Expedition Conference
Notes DAG; 600.045; 602.006; 605.203 Approved no
Call Number Admin @ si @ RFS2013 Serial 2298
Permanent link to this record
 

 
Author Hongxing Gao; Marçal Rusiñol; Dimosthenis Karatzas; Josep Llados; Tomokazu Sato; Masakazu Iwamura; Koichi Kise
Title Key-region detection for document images -applications to administrative document retrieval Type Conference Article
Year 2013 Publication 12th International Conference on Document Analysis and Recognition Abbreviated Journal
Volume Issue Pages 230-234
Keywords
Abstract In this paper we argue that a key-region detector designed to take into account the special characteristics of document images can result in the detection of less and more meaningful key-regions. We propose a fast key-region detector able to capture aspects of the structural information of the document, and demonstrate its efficiency by comparing against standard detectors in an administrative document retrieval scenario. We show that using the proposed detector results to a smaller number of detected key-regions and higher performance without any drop in speed compared to standard state of the art detectors.
Address Washington; USA; August 2013
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1520-5363 ISBN (down) Medium
Area Expedition Conference ICDAR
Notes DAG; 600.056; 600.045 Approved no
Call Number Admin @ si @ GRK2013b Serial 2293
Permanent link to this record
 

 
Author Andreas Fischer; Volkmar Frinken; Horst Bunke; Ching Y. Suen
Title Improving HMM-Based Keyword Spotting with Character Language Models Type Conference Article
Year 2013 Publication 12th International Conference on Document Analysis and Recognition Abbreviated Journal
Volume Issue Pages 506-510
Keywords
Abstract Facing high error rates and slow recognition speed for full text transcription of unconstrained handwriting images, keyword spotting is a promising alternative to locate specific search terms within scanned document images. We have previously proposed a learning-based method for keyword spotting using character hidden Markov models that showed a high performance when compared with traditional template image matching. In the lexicon-free approach pursued, only the text appearance was taken into account for recognition. In this paper, we integrate character n-gram language models into the spotting system in order to provide an additional language context. On the modern IAM database as well as the historical George Washington database, we demonstrate that character language models significantly improve the spotting performance.
Address Washington; USA; August 2013
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1520-5363 ISBN (down) Medium
Area Expedition Conference ICDAR
Notes DAG; 600.045; 605.203 Approved no
Call Number Admin @ si @ FFB2013 Serial 2295
Permanent link to this record