|   | 
Details
   web
Records
Author Debora Gil; Jordi Gonzalez; Gemma Sanchez (eds)
Title Computer Vision: Advances in Research and Development Type Book Whole
Year 2007 Publication Proceedings of the 2nd CVC International Workshop Abbreviated Journal
Volume Issue Pages (up)
Keywords
Abstract
Address
Corporate Author Thesis
Publisher UAB Place of Publication Bellaterra (Spain) Editor Debora Gil; Jordi Gonzalez; Gemma Sanchez
Language Summary Language Original Title
Series Editor Series Title 2 Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-935251-4-9 Medium
Area Expedition Conference
Notes IAM; ISE; DAG Approved no
Call Number IAM @ iam @ GGS2007 Serial 1493
Permanent link to this record
 

 
Author G.Estape; Enric Marti
Title L’ús d’aplicacions de visualització 3D com a eina d’aprenenetatge en activitats formatives dirigides i autònomes: el cas del programa Bluestar Type Miscellaneous
Year 2008 Publication V Jornades d’Innovació Docent UAB Abbreviated Journal
Volume Issue Pages (up)
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM Approved no
Call Number IAM @ iam @ ESM2008 Serial 1495
Permanent link to this record
 

 
Author Gemma Sanchez; Josep Llados; Enric Marti
Title A string-based method to recognize symbols and structural textures in architectural plans Type Conference Article
Year 1997 Publication 2nd IAPR Workshop on Graphics Recognition Abbreviated Journal
Volume Issue Pages (up)
Keywords
Abstract This paper deals with the recognition of symbols and struc- tural textures in architectural plans using string matching techniques. A plan is represented by an attributed graph whose nodes represent characteristic points and whose edges represent segments. Symbols and textures can be seen as a set of regions, i.e. closed loops in the graph, with a particular arrangement. The search for a symbol involves a graph matching between the regions of a model graph and the regions of the graph representing the document. Discriminating a texture means a clus- tering of neighbouring regions of this graph. Both procedures involve a similarity measure between graph regions. A string codification is used to represent the sequence of outlining edges of a region. Thus, the simila- rity between two regions is defined in terms of the string edit distance between their boundary strings. The use of string matching allows the recognition method to work also under presence of distortion.
Address Nancy, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes DAG; IAM Approved no
Call Number IAM @ iam @ SLE1997 Serial 1498
Permanent link to this record
 

 
Author Jaume Garcia
Title Statistical Models of the Architecture and Function of the Left Ventricle Type Book Whole
Year 2009 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages (up)
Keywords
Abstract Cardiovascular Diseases, specially those affecting the Left Ventricle (LV), are the leading cause of death in developed countries with approximately a 30% of all global deaths. In order to address this public health concern, physicians focus on diagnosis and therapy planning. On one hand, early and accurate detection of Regional Wall Motion Abnormalities (RWMA) significantly contributes to a quick diagnosis and prevents the patient to reach more severe stages. On the other hand, a thouroughly knowledge of the normal gross anatomy of the LV, as well as, the distribution of its muscular fibers is crucial for designing specific interventions and therapies (such as pacemaker implanction). Statistical models obtained from the analysis of different imaging modalities allow the computation of the normal ranges of variation within a given population. Normality models are a valuable tool for the definition of objective criterions quantifying the degree of (anomalous) deviation of the LV function and anatomy for a given subject. The creation of statistical models involve addressing three main issues: extraction of data from images, definition of a common domain for comparison of data across patients and designing appropriate statistical analysis schemes. In this PhD thesis we present generic image processing tools for the creation of statistical models of the LV anatomy and function. On one hand, we use differential geometry concepts to define a computational framework (the Normalized Parametric Domain, NPD) suitable for the comparison and fusion of several clinical scores obtained over the LV. On the other hand, we present a variational approach (the Harmonic Phase Flow, HPF) for the estimation of myocardial motion that provides dense and continuous vector fields without overestimating motion at injured areas. These tools are used for the creation of statistical models. Regarding anatomy, we obtain an atlas jointly modelling, both, LV gross anatomy and fiber architecture. Regarding function, we compute normality patterns of scores characterizing the (global and local) LV function and explore, for the first time, the configuration of local scores better suited for RWMA detection.
Address
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor Debora Gil
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM Approved no
Call Number IAM @ iam @ Gar2009a Serial 1499
Permanent link to this record
 

 
Author Enrique Cabello; Cristina Conde; Angel Serrano; Licesio Rodriguez; David Vazquez
Title Empleo de sistemas biométricos para el reconocimiento de personas en aeropuertos Type Miscellaneous
Year 2006 Publication Instituto Universitario de Investigación sobre Seguridad Interior (IUSI 2006) Abbreviated Journal
Volume Issue Pages (up)
Keywords Surveillance; Face detection; Face recognition
Abstract El presente proyecto se desarrolló a lo largo del año 2005, probando un prototipo de un sistema de verificación facial con imágenes extraídas de las cámaras de video vigilancia del aeropuerto de Barajas. Se diseñaron varios experimentos, agrupados en dos clases. En el primer tipo, el sistema es entrenado con imágenes obtenidas en condiciones de laboratorio y luego probado con imágenes extraídas de las cámaras de video vigilancia del aeropuerto de Barajas. En el segundo caso, tanto las imágenes de entrenamiento como las de prueba corresponden a imágenes extraídas de Barajas. Se ha desarrollado un sistema completo, que incluye adquisición y digitalización de las imágenes, localización y recorte de las caras en escena, verificación de sujetos y obtención de resultados. Los resultados muestran, que, en general, un sistema de verificación facial basado en imágenes puede ser una ayuda a un operario que deba estar vigilando amplias zonas.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes invisible;ADAS Approved no
Call Number ADAS @ adas @ CCS2006a Serial 1672
Permanent link to this record
 

 
Author Jaume Garcia
Title Generalized Active Shape Models Applied to Cardiac Function Analysis Type Report
Year 2004 Publication CVC Technical Report Abbreviated Journal
Volume Issue 78 Pages (up)
Keywords Cardiac Analysis; Deformable Models; Active Contour Models; Active Shape Models; Tagged MRI; HARP; Contrast Echocardiography.
Abstract Medical imaging is very useful in the assessment and treatment of many diseases. To deal with the great amount of data provided by imaging scanners and extract quantitative information that physicians can interpret, many analysis algorithms have been developed. Any process of analysis always consists of a first step of segmenting some particular structure. In medical imaging, structures are not always well defined and suffer from noise artifacts thus, ordinary segmentation methods are not well suited. The ones that seem to give better results are those based on deformable models. Nevertheless, despite their capability of mixing image features together with smoothness constraints that may compensate for image irregularities, these are naturally local methods, i. e., each node of the active contour evolve taking into account information about its neighbors and some other weak constraints about flexibility and smoothness, but not about the global shape that they should find. Due to the fact that structures to be segmented are the same for all cases but with some inter and intra-patient variation, the incorporation of a priori knowledge about shape in the segmentation method will provide robustness to it. Active Shape Models is an algorithm based on the creation of a shape model called Point Distribution Model. It performs a segmentation using only shapes similar than those previously learned from a training set that capture most of the variation presented by the structure. This algorithm works by updating shape nodes along a normal segment which often can be too restrictive. For this reason we propose a generalization of this algorithm that we call Generalized Active Shape Models and fully integrates the a priori knowledge given by the Point Distribution Model with deformable models or any other appropriate segmentation method. Two different applications to cardiac imaging of this generalized method are developed and promising results are shown.
Address CVC (UAB)
Corporate Author Thesis Master's thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM; Approved no
Call Number IAM @ iam @ Gar2004 Serial 1513
Permanent link to this record
 

 
Author M. Gomez; J. Mauri; Eduard Fernandez-Nofrerias; Oriol Rodriguez-Leor; Carme Julia; Debora Gil; Petia Radeva
Title Reconstrucción de un modelo espacio-temporal de la luz del vaso a partir de secuencias de ecografía intracoronaria Type Conference Article
Year 2002 Publication XXXVIII Congreso Nacional de la Sociedad Española de Cardiología. Abbreviated Journal
Volume Issue Pages (up)
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM;ADAS;MILAB Approved no
Call Number IAM @ iam @ GMF2002d Serial 1516
Permanent link to this record
 

 
Author Debora Gil
Title Geometric Differential Operators for Shape Modelling Type Book Whole
Year 2004 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages (up)
Keywords
Abstract Medical imaging feeds research in many computer vision and image processing fields: image filtering, segmentation, shape recovery, registration, retrieval and pattern matching. Because of their low contrast changes and large variety of artifacts and noise, medical imaging processing techniques relying on an analysis of the geometry of image level sets rather than on intensity values result in more robust treatment. From the starting point of treatment of intravascular images, this PhD thesis ad- dresses the design of differential image operators based on geometric principles for a robust shape modelling and restoration. Among all fields applying shape recovery, we approach filtering and segmentation of image objects. For a successful use in real images, the segmentation process should go through three stages: noise removing, shape modelling and shape recovery. This PhD addresses all three topics, but for the sake of algorithms as automated as possible, techniques for image processing will be designed to satisfy three main principles: a) convergence of the iterative schemes to non-trivial states avoiding image degeneration to a constant image and representing smooth models of the originals; b) smooth asymptotic behav- ior ensuring stabilization of the iterative process; c) fixed parameter values ensuring equal (domain free) performance of the algorithms whatever initial images/shapes. Our geometric approach to the generic equations that model the different processes approached enables defining techniques satisfying all the former requirements. First, we introduce a new curvature-based geometric flow for image filtering achieving a good compromise between noise removing and resemblance to original images. Sec- ond, we describe a new family of diffusion operators that restrict their scope to image level curves and serve to restore smooth closed models from unconnected sets of points. Finally, we design a regularization of snake (distance) maps that ensures its smooth convergence towards any closed shape. Experiments show that performance of the techniques proposed overpasses that of state-of-the-art algorithms.
Address
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Barcelona (Spain) Editor Jordi Saludes i Closa;Petia Radeva
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 84-933652-0-3 Medium prit
Area Expedition Conference
Notes IAM; Approved no
Call Number IAM @ iam @ GIL2004 Serial 1517
Permanent link to this record
 

 
Author Debora Gil
Title Regularized Curvature Flow Type Report
Year 2002 Publication CVC Technical Report Abbreviated Journal
Volume Issue 63 Pages (up)
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Computer Vision Centre Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM; Approved no
Call Number IAM @ iam @ Gil2002 Serial 1518
Permanent link to this record
 

 
Author Debora Gil; Jaume Garcia; Manuel Vazquez; Ruth Aris; Guillaume Houzeaux
Title Patient-Sensitive Anatomic and Functional 3D Model of the Left Ventricle Function Type Conference Article
Year 2008 Publication 8th World Congress on Computational Mechanichs (WCCM8)/5th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2008) Abbreviated Journal
Volume Issue Pages (up)
Keywords Left Ventricle; Electromechanical Models; Image Processing; Magnetic Resonance.
Abstract Early diagnosis and accurate treatment of Left Ventricle (LV) dysfunction significantly increases the patient survival. Impairment of LV contractility due to cardiovascular diseases is reflected in its motion patterns. Recent advances in medical imaging, such as Magnetic Resonance (MR), have encouraged research on 3D simulation and modelling of the LV dynamics. Most of the existing 3D models consider just the gross anatomy of the LV and restore a truncated ellipse which deforms along the cardiac cycle. The contraction mechanics of any muscle strongly depends on the spatial orientation of its muscular fibers since the motion that the muscle undergoes mainly takes place along the fibers. It follows that such simplified models do not allow evaluation of the heart electro-mechanical function and coupling, which has recently risen as the key point for understanding the LV functionality . In order to thoroughly understand the LV mechanics it is necessary to consider the complete anatomy of the LV given by the orientation of the myocardial fibres in 3D space as described by Torrent Guasp. We propose developing a 3D patient-sensitive model of the LV integrating, for the first time, the ven- tricular band anatomy (fibers orientation), the LV gross anatomy and its functionality. Such model will represent the LV function as a natural consequence of its own ventricular band anatomy. This might be decisive in restoring a proper LV contraction in patients undergoing pace marker treatment. The LV function is defined as soon as the propagation of the contractile electromechanical pulse has been modelled. In our experiments we have used the wave equation for the propagation of the electric pulse. The electromechanical wave moves on the myocardial surface and should have a conductivity tensor oriented along the muscular fibers. Thus, whatever mathematical model for electric pulse propa- gation [4] we consider, the complete anatomy of the LV should be extracted. The LV gross anatomy is obtained by processing multi slice MR images recorded for each patient. Information about the myocardial fibers distribution can only be extracted by Diffusion Tensor Imag- ing (DTI), which can not provide in vivo information for each patient. As a first approach, we have computed an average model of fibers from several DTI studies of canine hearts. This rough anatomy is the input for our electro-mechanical propagation model simulating LV dynamics. The average fiber orientation is updated until the simulated LV motion agrees with the experimental evidence provided by the LV motion observed in tagged MR (TMR) sequences. Experimental LV motion is recovered by applying image processing, differential geometry and interpolation techniques to 2D TMR slices [5]. The pipeline in figure 1 outlines the interaction between simulations and experimental data leading to our patient-tailored model.
Address
Corporate Author Thesis
Publisher Place of Publication Venezia (Italia) Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN B-31470-08 ISBN Medium
Area Expedition Conference
Notes IAM Approved no
Call Number IAM @ iam @ GGV2008c Serial 1521
Permanent link to this record
 

 
Author Debora Gil; Aura Hernandez-Sabate; Antoni Carol; Oriol Rodriguez; Petia Radeva
Title A Deterministic-Statistic Adventitia Detection in IVUS Images Type Conference Article
Year 2005 Publication ESC Congress Abbreviated Journal
Volume Issue Pages (up)
Keywords Electron microscopy; Unbending; 2D crystal; Interpolation; Approximation
Abstract Plaque analysis in IVUS planes needs accurate intima and adventitia models. Large variety in adventitia descriptors difficulties its detection and motivates using a classification strategy for selecting points on the structure. Whatever the set of descriptors used, the selection stage suffers from fake responses due to noise and uncompleted true curves. In order to smooth background noise while strengthening responses, we apply a restricted anisotropic filter that homogenizes grey levels along the image significant structures. Candidate points are extracted by means of a simple semi supervised adaptive classification of the filtered image response to edge and calcium detectors. The final model is obtained by interpolating the former line segments with an anisotropic contour closing technique based on functional extension principles.
Address Stockholm; Sweden; September 2005
Corporate Author Thesis
Publisher Place of Publication ,Sweden (EU) Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ESC
Notes IAM;MILAB Approved no
Call Number IAM @ iam @ RMF2005a Serial 1523
Permanent link to this record
 

 
Author Debora Gil; Petia Radeva
Title Curvature based Distance Maps Type Report
Year 2003 Publication CVC Technical Report Abbreviated Journal
Volume Issue 70 Pages (up)
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Computer Vision Center Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM;MILAB Approved no
Call Number IAM @ iam @ GIR2003a Serial 1534
Permanent link to this record
 

 
Author Debora Gil; Petia Radeva; Jordi Saludes; J. Mauri
Title Automatic Segmentation of Artery Wall in Coronary IVUS Images: a Probabilistic Approach Type Conference Article
Year 2000 Publication Proceedings of CIC’2000 Abbreviated Journal
Volume Issue Pages (up)
Keywords
Abstract Intravascular ultrasound images represent a unique tool to analyze the morphology of arteries and vessels (plaques, restenosis, etc). The poor quality of these images makes unsupervised segmentation based on traditional segmentation algorithms (such as edge or ridge/valley detection) fail to achieve the expected results. In this paper we present a probabilistic flexible template to separate different regions in the image. In particular, we use elliptic templates to model and detect the shape of the vessel inner wall in IVUS images. We present the results of successful segmentation obtained from patients undergoing stent treatment. A physician team has validated these results.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge, Massachussets Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CIC
Notes IAM;MILAB Approved no
Call Number IAM @ iam @ GRS2000 Serial 1538
Permanent link to this record
 

 
Author Debora Gil; Petia Radeva; Fernando Vilariño
Title Anisotropic Contour Completion Type Conference Article
Year 2003 Publication Proceedings of the IEEE International Conference on Image Processing Abbreviated Journal
Volume Issue Pages (up)
Keywords
Abstract In this paper we introduce a novel application of the diffusion tensor for anisotropic image processing. The Anisotropic Contour Completion (ACC) we suggest consists in extending the characteristic function of the open curve by means of a degenerated diffusion tensor that prevents any diffusion in the normal direction. We show that ACC is equivalent to a dilation with a continuous elliptic structural element that takes into account the local orientation of the contours to be closed. Experiments on contours extracted from real images show that ACC produces shapes able to adapt to any curve in an active contour framework. 1.
Address
Corporate Author Thesis
Publisher Place of Publication Barcelona, Spain Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 0-7803-7751-6 Medium
Area Expedition Conference
Notes IAM;MV;MILAB;SIAI Approved no
Call Number IAM @ iam @ GRV2003 Serial 1539
Permanent link to this record
 

 
Author Aura Hernandez-Sabate
Title Exploring Arterial Dynamics and Structures in IntraVascular Ultrasound Sequences Type Book Whole
Year 2009 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages (up)
Keywords
Abstract Cardiovascular diseases are a leading cause of death in developed countries. Most of them are caused by arterial (specially coronary) diseases, mainly caused by plaque accumulation. Such pathology narrows blood flow (stenosis) and affects artery bio- mechanical elastic properties (atherosclerosis). In the last decades, IntraVascular UltraSound (IVUS) has become a usual imaging technique for the diagnosis and follow up of arterial diseases. IVUS is a catheter-based imaging technique which shows a sequence of cross sections of the artery under study. Inspection of a single image gives information about the percentage of stenosis. Meanwhile, inspection of longitudinal views provides information about artery bio-mechanical properties, which can prevent a fatal outcome of the cardiovascular disease. On one hand, dynamics of arteries (due to heart pumping among others) is a major artifact for exploring tissue bio-mechanical properties. On the other one, manual stenosis measurements require a manual tracing of vessel borders, which is a time-consuming task and might suffer from inter-observer variations. This PhD thesis proposes several image processing tools for exploring vessel dy- namics and structures. We present a physics-based model to extract, analyze and correct vessel in-plane rigid dynamics and to retrieve cardiac phase. Furthermore, we introduce a deterministic-statistical method for automatic vessel borders detection. In particular, we address adventitia layer segmentation. An accurate validation pro- tocol to ensure reliable clinical applicability of the methods is a crucial step in any proposal of an algorithm. In this thesis we take special care in designing a valida- tion protocol for each approach proposed and we contribute to the in vivo dynamics validation with a quantitative and objective score to measure the amount of motion suppressed.
Address
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor Debora Gil
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-937261-6-4 Medium
Area Expedition Conference
Notes IAM; Approved no
Call Number IAM @ iam @ Her2009 Serial 1543
Permanent link to this record