|
Juan Ramon Terven Salinas, Bogdan Raducanu, Maria Elena Meza-de-Luna, & Joaquin Salas. (2016). Head-gestures mirroring detection in dyadic social linteractions with computer vision-based wearable devices. NEUCOM - Neurocomputing, 175(B), 866–876.
Abstract: During face-to-face human interaction, nonverbal communication plays a fundamental role. A relevant aspect that takes part during social interactions is represented by mirroring, in which a person tends to mimic the non-verbal behavior (head and body gestures, vocal prosody, etc.) of the counterpart. In this paper, we introduce a computer vision-based system to detect mirroring in dyadic social interactions with the use of a wearable platform. In our context, mirroring is inferred as simultaneous head noddings displayed by the interlocutors. Our approach consists of the following steps: (1) facial features extraction; (2) facial features stabilization; (3) head nodding recognition; and (4) mirroring detection. Our system achieves a mirroring detection accuracy of 72% on a custom mirroring dataset.
Keywords: Head gestures recognition; Mirroring detection; Dyadic social interaction analysis; Wearable devices
|
|
|
Estefania Talavera, Maria Leyva-Vallina, Md. Mostafa Kamal Sarker, Domenec Puig, Nicolai Petkov, & Petia Radeva. (2020). Hierarchical approach to classify food scenes in egocentric photo-streams. J-BHI - IEEE Journal of Biomedical and Health Informatics, 24(3), 866–877.
Abstract: Recent studies have shown that the environment where people eat can affect their nutritional behaviour. In this work, we provide automatic tools for a personalised analysis of a person's health habits by the examination of daily recorded egocentric photo-streams. Specifically, we propose a new automatic approach for the classification of food-related environments, that is able to classify up to 15 such scenes. In this way, people can monitor the context around their food intake in order to get an objective insight into their daily eating routine. We propose a model that classifies food-related scenes organized in a semantic hierarchy. Additionally, we present and make available a new egocentric dataset composed of more than 33000 images recorded by a wearable camera, over which our proposed model has been tested. Our approach obtains an accuracy and F-score of 56\% and 65\%, respectively, clearly outperforming the baseline methods.
|
|
|
Miguel Angel Bautista, Sergio Escalera, & Oriol Pujol. (2014). On the Design of an ECOC-Compliant Genetic Algorithm. PR - Pattern Recognition, 47(2), 865–884.
Abstract: Genetic Algorithms (GA) have been previously applied to Error-Correcting Output Codes (ECOC) in state-of-the-art works in order to find a suitable coding matrix. Nevertheless, none of the presented techniques directly take into account the properties of the ECOC matrix. As a result the considered search space is unnecessarily large. In this paper, a novel Genetic strategy to optimize the ECOC coding step is presented. This novel strategy redefines the usual crossover and mutation operators in order to take into account the theoretical properties of the ECOC framework. Thus, it reduces the search space and lets the algorithm to converge faster. In addition, a novel operator that is able to enlarge the code in a smart way is introduced. The novel methodology is tested on several UCI datasets and four challenging computer vision problems. Furthermore, the analysis of the results done in terms of performance, code length and number of Support Vectors shows that the optimization process is able to find very efficient codes, in terms of the trade-off between classification performance and the number of classifiers. Finally, classification performance per dichotomizer results shows that the novel proposal is able to obtain similar or even better results while defining a more compact number of dichotomies and SVs compared to state-of-the-art approaches.
|
|
|
Oriol Rodriguez-Leor, J. Mauri, Eduard Fernandez-Nofrerias, Vicente de Valle, E. Garcia, A. Barrios, et al. (2006). Analysis of the changes in angiography local grey-level values to determine myocardial perfusion. In World Congress of Cardiology (862). Barcelona (Spain).
|
|
|
Fadi Dornaika, & Bogdan Raducanu. (2013). Out-of-Sample Embedding for Manifold Learning Applied to Face Recognition. In IEEE International Workshop on Analysis and Modeling of Faces and Gestures (pp. 862–868).
Abstract: Manifold learning techniques are affected by two critical aspects: (i) the design of the adjacency graphs, and (ii) the embedding of new test data---the out-of-sample problem. For the first aspect, the proposed schemes were heuristically driven. For the second aspect, the difficulty resides in finding an accurate mapping that transfers unseen data samples into an existing manifold. Past works addressing these two aspects were heavily parametric in the sense that the optimal performance is only reached for a suitable parameter choice that should be known in advance. In this paper, we demonstrate that sparse coding theory not only serves for automatic graph reconstruction as shown in recent works, but also represents an accurate alternative for out-of-sample embedding. Considering for a case study the Laplacian Eigenmaps, we applied our method to the face recognition problem. To evaluate the effectiveness of the proposed out-of-sample embedding, experiments are conducted using the k-nearest neighbor (KNN) and Kernel Support Vector Machines (KSVM) classifiers on four public face databases. The experimental results show that the proposed model is able to achieve high categorization effectiveness as well as high consistency with non-linear embeddings/manifolds obtained in batch modes.
|
|
|
Oriol Rodriguez-Leor, Eduard Fernandez-Nofrerias, J. Mauri, Vicente del Valle, Debora Gil, A.Barrios, et al. (2006). Perfusion ratio: A new tool to objectively assess microcirculation perfusion after primary Percutaneous Coronary Intervention. In World Congress of Cardiology (859). Barcelona (Spain).
|
|
|
Francisco Jose Perales, Juan J. Villanueva, & Yuhua Luo. (1991). An automatic two-camera human motion perception system based on biomechanical model matching. In IEEE International Conference on Systems, Man and Cybernetics (Vol. 2, pp. 856–858).
|
|
|
Jorge Charco, Angel Sappa, & Boris X. Vintimilla. (2022). Human Pose Estimation through a Novel Multi-view Scheme. In 17th International Conference on Computer Vision Theory and Applications (VISAPP 2022) (Vol. 5, pp. 855–862).
Abstract: This paper presents a multi-view scheme to tackle the challenging problem of the self-occlusion in human pose estimation problem. The proposed approach first obtains the human body joints of a set of images, which are captured from different views at the same time. Then, it enhances the obtained joints by using a
multi-view scheme. Basically, the joints from a given view are used to enhance poorly estimated joints from another view, especially intended to tackle the self occlusions cases. A network architecture initially proposed for the monocular case is adapted to be used in the proposed multi-view scheme. Experimental results and
comparisons with the state-of-the-art approaches on Human3.6m dataset are presented showing improvements in the accuracy of body joints estimations.
Keywords: Multi-view Scheme; Human Pose Estimation; Relative Camera Pose; Monocular Approach
|
|
|
Pierluigi Casale, Oriol Pujol, & Petia Radeva. (2014). Approximate polytope ensemble for one-class classification. PR - Pattern Recognition, 47(2), 854–864.
Abstract: In this work, a new one-class classification ensemble strategy called approximate polytope ensemble is presented. The main contribution of the paper is threefold. First, the geometrical concept of convex hull is used to define the boundary of the target class defining the problem. Expansions and contractions of this geometrical structure are introduced in order to avoid over-fitting. Second, the decision whether a point belongs to the convex hull model in high dimensional spaces is approximated by means of random projections and an ensemble decision process. Finally, a tiling strategy is proposed in order to model non-convex structures. Experimental results show that the proposed strategy is significantly better than state of the art one-class classification methods on over 200 datasets.
Keywords: One-class classification; Convex hull; High-dimensionality; Random projections; Ensemble learning
|
|
|
Jose Garcia-Rodriguez, Isabelle Guyon, Sergio Escalera, Alexandra Psarrou, Andrew Lewis, & Miguel Cazorla. (2017). Editorial: Special Issue on Computational Intelligence for Vision and Robotics. Neural Computing and Applications - Neural Computing and Applications, 28(5), 853–854.
|
|
|
E. Serradell, Adriana Romero, R. Leta, Carlo Gatta, & Francesc Moreno-Noguer. (2011). Simultaneous Correspondence and Non-Rigid 3D Reconstruction of the Coronary Tree from Single X-Ray Images. In 13th IEEE International Conference on Computer Vision (pp. 850–857).
|
|
|
Javier M. Olaso, Alain Vazquez, Leila Ben Letaifa, Mikel de Velasco, Aymen Mtibaa, Mohamed Amine Hmani, et al. (2021). The EMPATHIC Virtual Coach: a demo. In 23rd ACM International Conference on Multimodal Interaction (pp. 848–851).
Abstract: The main objective of the EMPATHIC project has been the design and development of a virtual coach to engage the healthy-senior user and to enhance well-being through awareness of personal status. The EMPATHIC approach addresses this objective through multimodal interactions supported by the GROW coaching model. The paper summarizes the main components of the EMPATHIC Virtual Coach (EMPATHIC-VC) and introduces a demonstration of the coaching sessions in selected scenarios.
|
|
|
Eugenio Alcala, Laura Sellart, Vicenc Puig, Joseba Quevedo, Jordi Saludes, David Vazquez, et al. (2016). Comparison of two non-linear model-based control strategies for autonomous vehicles. In 24th Mediterranean Conference on Control and Automation (pp. 846–851).
Abstract: This paper presents the comparison of two nonlinear model-based control strategies for autonomous cars. A control oriented model of vehicle based on a bicycle model is used. The two control strategies use a model reference approach. Using this approach, the error dynamics model is developed. Both controllers receive as input the longitudinal, lateral and orientation errors generating as control outputs the steering angle and the velocity of the vehicle. The first control approach is based on a non-linear control law that is designed by means of the Lyapunov direct approach. The second approach is based on a sliding mode-control that defines a set of sliding surfaces over which the error trajectories will converge. The main advantage of the sliding-control technique is the robustness against non-linearities and parametric uncertainties in the model. However, the main drawback of first order sliding mode is the chattering, so it has been implemented a high order sliding mode control. To test and compare the proposed control strategies, different path following scenarios are used in simulation.
Keywords: Autonomous Driving; Control
|
|
|
Maria Vanrell, & Jordi Vitria. (1997). Optimal 3x3 decomposable disks for morphological transformations. Image and Vision Computing, 15(11), 845–854.
|
|
|
Mohammad Ali Bagheri, Qigang Gao, & Sergio Escalera. (2015). Combining Local and Global Learners in the Pairwise Multiclass Classification. PAA - Pattern Analysis and Applications, 18(4), 845–860.
Abstract: Pairwise classification is a well-known class binarization technique that converts a multiclass problem into a number of two-class problems, one problem for each pair of classes. However, in the pairwise technique, nuisance votes of many irrelevant classifiers may result in a wrong class prediction. To overcome this problem, a simple, but efficient method is proposed and evaluated in this paper. The proposed method is based on excluding some classes and focusing on the most probable classes in the neighborhood space, named Local Crossing Off (LCO). This procedure is performed by employing a modified version of standard K-nearest neighbor and large margin nearest neighbor algorithms. The LCO method takes advantage of nearest neighbor classification algorithm because of its local learning behavior as well as the global behavior of powerful binary classifiers to discriminate between two classes. Combining these two properties in the proposed LCO technique will avoid the weaknesses of each method and will increase the efficiency of the whole classification system. On several benchmark datasets of varying size and difficulty, we found that the LCO approach leads to significant improvements using different base learners. The experimental results show that the proposed technique not only achieves better classification accuracy in comparison to other standard approaches, but also is computationally more efficient for tackling classification problems which have a relatively large number of target classes.
Keywords: Multiclass classification; Pairwise approach; One-versus-one
|
|