Marçal Rusiñol, David Aldavert, Ricardo Toledo, & Josep Llados. (2015). Towards Query-by-Speech Handwritten Keyword Spotting. In 13th International Conference on Document Analysis and Recognition ICDAR2015 (pp. 501–505).
Abstract: In this paper, we present a new querying paradigm for handwritten keyword spotting. We propose to represent handwritten word images both by visual and audio representations, enabling a query-by-speech keyword spotting system. The two representations are merged together and projected to a common sub-space in the training phase. This transform allows to, given a spoken query, retrieve word instances that were only represented by the visual modality. In addition, the same method can be used backwards at no additional cost to produce a handwritten text-tospeech system. We present our first results on this new querying mechanism using synthetic voices over the George Washington
dataset.
|
Hongxing Gao, Marçal Rusiñol, Dimosthenis Karatzas, Josep Llados, R.Jain, & D.Doermann. (2015). Novel Line Verification for Multiple Instance Focused Retrieval in Document Collections. In 13th International Conference on Document Analysis and Recognition ICDAR2015 (pp. 481–485).
|
Marçal Rusiñol, J. Chazalon, Jean-Marc Ogier, & Josep Llados. (2015). A Comparative Study of Local Detectors and Descriptors for Mobile Document Classification. In 13th International Conference on Document Analysis and Recognition ICDAR2015 (pp. 596–600).
Abstract: In this paper we conduct a comparative study of local key-point detectors and local descriptors for the specific task of mobile document classification. A classification architecture based on direct matching of local descriptors is used as baseline for the comparative study. A set of four different key-point
detectors and four different local descriptors are tested in all the possible combinations. The experiments are conducted in a database consisting of 30 model documents acquired on 6 different backgrounds, totaling more than 36.000 test images.
|
J. Chazalon, Marçal Rusiñol, Jean-Marc Ogier, & Josep Llados. (2015). A Semi-Automatic Groundtruthing Tool for Mobile-Captured Document Segmentation. In 13th International Conference on Document Analysis and Recognition ICDAR2015 (pp. 621–625).
Abstract: This paper presents a novel way to generate groundtruth data for the evaluation of mobile document capture systems, focusing on the first stage of the image processing pipeline involved: document object detection and segmentation in lowquality preview frames. We introduce and describe a simple, robust and fast technique based on color markers which enables a semi-automated annotation of page corners. We also detail a technique for marker removal. Methods and tools presented in the paper were successfully used to annotate, in few hours, 24889
frames in 150 video files for the smartDOC competition at ICDAR 2015
|
L. Calvet, A. Ferrer, M. Gomes, A. Juan, & David Masip. (2016). Combining Statistical Learning with Metaheuristics for the Multi-Depot Vehicle Routing Problem with Market Segmentation. CIE - Computers & Industrial Engineering, 94, 93–104.
Abstract: In real-life logistics and distribution activities it is usual to face situations in which the distribution of goods has to be made from multiple warehouses or depots to the nal customers. This problem is known as the Multi-Depot Vehicle Routing Problem (MDVRP), and it typically includes two sequential and correlated stages: (a) the assignment map of customers to depots, and (b) the corresponding design of the distribution routes. Most of the existing work in the literature has focused on minimizing distance-based distribution costs while satisfying a number of capacity constraints. However, no attention has been given so far to potential variations in demands due to the tness of the customerdepot mapping in the case of heterogeneous depots. In this paper, we consider this realistic version of the problem in which the depots are heterogeneous in terms of their commercial oer and customers show dierent willingness to consume depending on how well the assigned depot ts their preferences. Thus, we assume that dierent customer-depot assignment maps will lead to dierent customer-expenditure levels. As a consequence, market-segmentation strategiesneed to be considered in order to increase sales and total income while accounting for the distribution costs. To solve this extension of the MDVRP, we propose a hybrid approach that combines statistical learning techniques with a metaheuristic framework. First, a set of predictive models is generated from historical data. These statistical models allow estimating the demand of any customer depending on the assigned depot. Then, the estimated expenditure of each customer is included as part of an enriched objective function as a way to better guide the stochastic local search inside the metaheuristic framework. A set of computational experiments contribute to illustrate our approach and how the extended MDVRP considered here diers in terms of the proposed solutions from the traditional one.
Keywords: Multi-Depot Vehicle Routing Problem; market segmentation applications; hybrid algorithms; statistical learning
|
Tadashi Araki, Sumit K. Banchhor, Narendra D. Londhe, Nobutaka Ikeda, Petia Radeva, Devarshi Shukla, et al. (2016). Reliable and Accurate Calcium Volume Measurement in Coronary Artery Using Intravascular Ultrasound Videos. JMS - Journal of Medical Systems, 40(3), 51:1–51:20.
Abstract: Quantitative assessment of calcified atherosclerotic volume within the coronary artery wall is vital for cardiac interventional procedures. The goal of this study is to automatically measure the calcium volume, given the borders of coronary vessel wall for all the frames of the intravascular ultrasound (IVUS) video. Three soft computing fuzzy classification techniques were adapted namely Fuzzy c-Means (FCM), K-means, and Hidden Markov Random Field (HMRF) for automated segmentation of calcium regions and volume computation. These methods were benchmarked against previously developed threshold-based method. IVUS image data sets (around 30,600 IVUS frames) from 15 patients were collected using 40 MHz IVUS catheter (Atlantis® SR Pro, Boston Scientific®, pullback speed of 0.5 mm/s). Calcium mean volume for FCM, K-means, HMRF and threshold-based method were 37.84 ± 17.38 mm3, 27.79 ± 10.94 mm3, 46.44 ± 19.13 mm3 and 35.92 ± 16.44 mm3 respectively. Cross-correlation, Jaccard Index and Dice Similarity were highest between FCM and threshold-based method: 0.99, 0.92 ± 0.02 and 0.95 + 0.02 respectively. Student’s t-test, z-test and Wilcoxon-test are also performed to demonstrate consistency, reliability and accuracy of the results. Given the vessel wall region, the system reliably and automatically measures the calcium volume in IVUS videos. Further, we validated our system against a trained expert using scoring: K-means showed the best performance with an accuracy of 92.80 %. Out procedure and protocol is along the line with method previously published clinically.
Keywords: Interventional cardiology; Atherosclerosis; Coronary arteries; IVUS; calcium volume; Soft computing; Performance Reliability; Accuracy
|
Lluis Pere de las Heras, David Fernandez, Alicia Fornes, Ernest Valveny, Gemma Sanchez, & Josep Llados. (2013). Runlength Histogram Image Signature for Perceptual Retrieval of Architectural Floor Plans. In 10th IAPR International Workshop on Graphics Recognition.
|
Mikhail Mozerov, & Joost Van de Weijer. (2015). Global Color Sparseness and a Local Statistics Prior for Fast Bilateral Filtering. TIP - IEEE Transactions on Image Processing, 24(12), 5842–5853.
Abstract: The property of smoothing while preserving edges makes the bilateral filter a very popular image processing tool. However, its non-linear nature results in a computationally costly operation. Various works propose fast approximations to the bilateral filter. However, the majority does not generalize to vector input as is the case with color images. We propose a fast approximation to the bilateral filter for color images. The filter is based on two ideas. First, the number of colors, which occur in a single natural image, is limited. We exploit this color sparseness to rewrite the initial non-linear bilateral filter as a number of linear filter operations. Second, we impose a statistical prior to the image values that are locally present within the filter window. We show that this statistical prior leads to a closed-form solution of the bilateral filter. Finally, we combine both ideas into a single fast and accurate bilateral filter for color images. Experimental results show that our bilateral filter based on the local prior yields an extremely fast bilateral filter approximation, but with limited accuracy, which has potential application in real-time video filtering. Our bilateral filter, which combines color sparseness and local statistics, yields a fast and accurate bilateral filter approximation and obtains the state-of-the-art results.
|
Dimosthenis Karatzas, Lluis Gomez, Anguelos Nicolaou, Suman Ghosh, Andrew Bagdanov, Masakazu Iwamura, et al. (2015). ICDAR 2015 Competition on Robust Reading. In 13th International Conference on Document Analysis and Recognition ICDAR2015 (pp. 1156–1160).
|
Lluis Gomez, & Dimosthenis Karatzas. (2015). Object Proposals for Text Extraction in the Wild. In 13th International Conference on Document Analysis and Recognition ICDAR2015 (pp. 206–210).
Abstract: Object Proposals is a recent computer vision technique receiving increasing interest from the research community. Its main objective is to generate a relatively small set of bounding box proposals that are most likely to contain objects of interest. The use of Object Proposals techniques in the scene text understanding field is innovative. Motivated by the success of powerful while expensive techniques to recognize words in a holistic way, Object Proposals techniques emerge as an alternative to the traditional text detectors. In this paper we study to what extent the existing generic Object Proposals methods may be useful for scene text understanding. Also, we propose a new Object Proposals algorithm that is specifically designed for text and compare it with other generic methods in the state of the art. Experiments show that our proposal is superior in its ability of producing good quality word proposals in an efficient way. The source code of our method is made publicly available
|
Anguelos Nicolaou, Andrew Bagdanov, Marcus Liwicki, & Dimosthenis Karatzas. (2015). Sparse Radial Sampling LBP for Writer Identification. In 13th International Conference on Document Analysis and Recognition ICDAR2015 (pp. 716–720).
Abstract: In this paper we present the use of Sparse Radial Sampling Local Binary Patterns, a variant of Local Binary Patterns (LBP) for text-as-texture classification. By adapting and extending the standard LBP operator to the particularities of text we get a generic text-as-texture classification scheme and apply it to writer identification. In experiments on CVL and ICDAR 2013 datasets, the proposed feature-set demonstrates State-Of-the-Art (SOA) performance. Among the SOA, the proposed method is the only one that is based on dense extraction of a single local feature descriptor. This makes it fast and applicable at the earliest stages in a DIA pipeline without the need for segmentation, binarization, or extraction of multiple features.
|
Suman Ghosh, Lluis Gomez, Dimosthenis Karatzas, & Ernest Valveny. (2015). Efficient indexing for Query By String text retrieval. In 6th IAPR International Workshop on Camera Based Document Analysis and Recognition CBDAR2015 (pp. 1236–1240).
Abstract: This paper deals with Query By String word spotting in scene images. A hierarchical text segmentation algorithm based on text specific selective search is used to find text regions. These regions are indexed per character n-grams present in the text region. An attribute representation based on Pyramidal Histogram of Characters (PHOC) is used to compare text regions with the query text. For generation of the index a similar attribute space based Pyramidal Histogram of character n-grams is used. These attribute models are learned using linear SVMs over the Fisher Vector [1] representation of the images along with the PHOC labels of the corresponding strings.
|
J.Kuhn, A.Nussbaumer, J.Pirker, Dimosthenis Karatzas, A. Pagani, O.Conlan, et al. (2015). Advancing Physics Learning Through Traversing a Multi-Modal Experimentation Space. In Workshop Proceedings on the 11th International Conference on Intelligent Environments (Vol. 19, pp. 373–380).
Abstract: Translating conceptual knowledge into real world experiences presents a significant educational challenge. This position paper presents an approach that supports learners in moving seamlessly between conceptual learning and their application in the real world by bringing physical and virtual experiments into everyday settings. Learners are empowered in conducting these situated experiments in a variety of physical settings by leveraging state of the art mobile, augmented reality, and virtual reality technology. A blend of mobile-based multi-sensory physical experiments, augmented reality and enabling virtual environments can allow learners to bridge their conceptual learning with tangible experiences in a completely novel manner. This approach focuses on the learner by applying self-regulated personalised learning techniques, underpinned by innovative pedagogical approaches and adaptation techniques, to ensure that the needs and preferences of each learner are catered for individually.
|
Lluis Pere de las Heras, Ernest Valveny, & Gemma Sanchez. (2013). Unsupervised and Notation-Independent Wall Segmentation in Floor Plans Using a Combination of Statistical and Structural Strategies. In 10th IAPR International Workshop on Graphics Recognition.
|
Maedeh Aghaei, Mariella Dimiccoli, & Petia Radeva. (2015). Towards social interaction detection in egocentric photo-streams. In Proceedings of SPIE, 8th International Conference on Machine Vision , ICMV 2015 (Vol. 9875).
Abstract: Detecting social interaction in videos relying solely on visual cues is a valuable task that is receiving increasing attention in recent years. In this work, we address this problem in the challenging domain of egocentric photo-streams captured by a low temporal resolution wearable camera (2fpm). The major difficulties to be handled in this context are the sparsity of observations as well as unpredictability of camera motion and attention orientation due to the fact that the camera is worn as part of clothing. Our method consists of four steps: multi-faces localization and tracking, 3D localization, pose estimation and analysis of f-formations. By estimating pair-to-pair interaction probabilities over the sequence, our method states the presence or absence of interaction with the camera wearer and specifies which people are more involved in the interaction. We tested our method over a dataset of 18.000 images and we show its reliability on our considered purpose. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
|