toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Carles Fernandez edit  isbn
openurl 
  Title Understanding Image Sequences: the Role of Ontologies in Cognitive Vision Type Book Whole
  Year 2010 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract The increasing ubiquitousness of digital information in our daily lives has positioned
video as a favored information vehicle, and given rise to an astonishing generation of
social media and surveillance footage. This raises a series of technological demands
for automatic video understanding and management, which together with the compromising attentional limitations of human operators, have motivated the research
community to guide its steps towards a better attainment of such capabilities. As
a result, current trends on cognitive vision promise to recognize complex events and
self-adapt to different environments, while managing and integrating several types of
knowledge. Future directions suggest to reinforce the multi-modal fusion of information sources and the communication with end-users.
In this thesis we tackle the problem of recognizing and describing meaningful
events in video sequences from different domains, and communicating the resulting
knowledge to end-users by means of advanced interfaces for human–computer interaction. This problem is addressed by designing the high-level modules of a cognitive
vision framework exploiting ontological knowledge. Ontologies allow us to define the
relevant concepts in a domain and the relationships among them; we prove that the
use of ontologies to organize, centralize, link, and reuse different types of knowledge
is a key factor in the materialization of our objectives.
The proposed framework contributes to: (i) automatically learn the characteristics
of different scenarios in a domain; (ii) reason about uncertain, incomplete, or vague
information from visual –camera’s– or linguistic –end-user’s– inputs; (iii) derive plausible interpretations of complex events from basic spatiotemporal developments; (iv)
facilitate natural interfaces that adapt to the needs of end-users, and allow them to
communicate efficiently with the system at different levels of interaction; and finally,
(v) find mechanisms to guide modeling processes, maintain and extend the resulting
models, and to exploit multimodal resources synergically to enhance the former tasks.
We describe a holistic methodology to achieve these goals. First, the use of prior
taxonomical knowledge is proved useful to guide MAP-MRF inference processes in
the automatic identification of semantic regions, with independence of a particular scenario. Towards the recognition of complex video events, we combine fuzzy
metric-temporal reasoning with SGTs, thus assessing high-level interpretations from
spatiotemporal data. Here, ontological resources like T–Boxes, onomasticons, or factual databases become useful to derive video indexing and retrieval capabilities, and
also to forward highlighted content to smart user interfaces. There, we explore the
application of ontologies to discourse analysis and cognitive linguistic principles, or scene augmentation techniques towards advanced communication by means of natural language dialogs and synthetic visualizations. Ontologies become fundamental to
coordinate, adapt, and reuse the different modules in the system.
The suitability of our ontological framework is demonstrated by a series of applications that especially benefit the field of smart video surveillance, viz. automatic generation of linguistic reports about the content of video sequences in multiple natural
languages; content-based filtering and summarization of these reports; dialogue-based
interfaces to query and browse video contents; automatic learning of semantic regions
in a scenario; and tools to evaluate the performance of components and models in the
system, via simulation and augmented reality.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor (up) Jordi Gonzalez;Xavier Roca  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-937261-2-6 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Admin @ si @ Fer2010a Serial 1333  
Permanent link to this record
 

 
Author Francisco Javier Orozco edit  isbn
openurl 
  Title Human Emotion Evaluation on Facial Image Sequences Type Book Whole
  Year 2010 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Psychological evidence has emphasized the importance of affective behaviour understanding due to its high impact in nowadays interaction humans and computers. All
type of affective and behavioural patterns such as gestures, emotions and mental
states are highly displayed through the face, head and body. Therefore, this thesis is
focused to analyse affective behaviours on head and face. To this end, head and facial
movements are encoded by using appearance based tracking methods. Specifically,
a wise combination of deformable models captures rigid and non-rigid movements of
different kinematics; 3D head pose, eyebrows, mouth, eyelids and irises are taken into
account as basis for extracting features from databases of video sequences. This approach combines the strengths of adaptive appearance models, optimization methods
and backtracking techniques.
For about thirty years, computer sciences have addressed the investigation on
human emotions to the automatic recognition of six prototypic emotions suggested
by Darwin and systematized by Paul Ekman in the seventies. The Facial Action
Coding System (FACS) which uses discrete movements of the face (called Action
units or AUs) to code the six facial emotions named anger, disgust, fear, happy-Joy,
sadness and surprise. However, human emotions are much complex patterns that
have not received the same attention from computer scientists.
Simon Baron-Cohen proposed a new taxonomy of emotions and mental states
without a system coding of the facial actions. These 426 affective behaviours are
more challenging for the understanding of human emotions. Beyond of classically
classifying the six basic facial expressions, more subtle gestures, facial actions and
spontaneous emotions are considered here. By assessing confidence on the recognition
results, exploring spatial and temporal relationships of the features, some methods are
combined and enhanced for developing new taxonomy of expressions and emotions.
The objective of this dissertation is to develop a computer vision system, including both facial feature extraction, expression recognition and emotion understanding
by building a bottom-up reasoning process. Building a detailed taxonomy of human
affective behaviours is an interesting challenge for head-face-based image analysis
methods. In this paper, we exploit the strengths of Canonical Correlation Analysis
(CCA) to enhance an on-line head-face tracker. A relationship between head pose and
local facial movements is studied according to their cognitive interpretation on affective expressions and emotions. Active Shape Models are synthesized for AAMs based
on CCA-regression. Head pose and facial actions are fused into a maximally correlated space in order to assess expressiveness, confidence and classification in a CBR system. The CBR solutions are also correlated to the cognitive features, which allow
avoiding exhaustive search when recognizing new head-face features. Subsequently,
Support Vector Machines (SVMs) and Bayesian Networks are applied for learning the
spatial relationships of facial expressions. Similarly, the temporal evolution of facial
expressions, emotion and mental states are analysed based on Factorized Dynamic
Bayesian Networks (FaDBN).
As results, the bottom-up system recognizes six facial expressions, six basic emotions and six mental states, plus enhancing this categorization with confidence assessment at each level, intensity of expressions and a complete taxonomy
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor (up) Jordi Gonzalez;Xavier Roca  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-936529-3-7 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Admin @ si @ Oro2010 Serial 1335  
Permanent link to this record
 

 
Author Partha Pratim Roy edit  isbn
openurl 
  Title Multi-Oriented and Multi-Scaled Text Character Analysis and Recognition in Graphical Documents and their Applications to Document Image Retrieval Type Book Whole
  Year 2010 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract With the advent research of Document Image Analysis and Recognition (DIAR), an
important line of research is explored on indexing and retrieval of graphics rich documents. It aims at finding relevant documents relying on segmentation and recognition
of text and graphics components underlying in non-standard layout where commercial
OCRs can not be applied due to complexity. This thesis is focused towards text information extraction approaches in graphical documents and retrieval of such documents
using text information.
Automatic text recognition in graphical documents (map, engineering drawing,
etc.) involves many challenges because text characters are usually printed in multioriented and multi-scale way along with different graphical objects. Text characters
are used to annotate the graphical curve lines and hence, many times they follow
curvi-linear paths too. For OCR of such documents, individual text lines and their
corresponding words/characters need to be extracted.
For recognition of multi-font, multi-scale and multi-oriented characters, we have
proposed a feature descriptor for character shape using angular information from contour pixels to take care of the invariance nature. To improve the efficiency of OCR, an
approach towards the segmentation of multi-oriented touching strings into individual
characters is also discussed. Convex hull based background information is used to
segment a touching string into possible primitive segments and later these primitive
segments are merged to get optimum segmentation using dynamic programming. To
overcome the touching/overlapping problem of text with graphical lines, a character
spotting approach using SIFT and skeleton information is included. Afterwards, we
propose a novel method to extract individual curvi-linear text lines using the foreground and background information of the characters of the text and a water reservoir
concept is used to utilize the background information.
We have also formulated the methodologies for graphical document retrieval applications using query words and seals. The retrieval approaches are performed using
recognition results of individual components in the document. Given a query text,
the system extracts positional knowledge from the query word and uses the same to
generate hypothetical locations in the document. Indexing of documents is also performed based on automatic detection of seals from documents containing cluttered
background. A seal is characterized by scale and rotation invariant spatial feature
descriptors computed from labelled text characters and a concept based on the Generalized Hough Transform is used to locate the seal in documents.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor (up) Josep Llados;Umapada Pal  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-937261-7-1 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Admin @ si @ Roy2010 Serial 1455  
Permanent link to this record
 

 
Author Eloi Puertas; Sergio Escalera; Oriol Pujol edit  isbn
openurl 
  Title Classifying Objects at Different Sizes with Multi-Scale Stacked Sequential Learning Type Conference Article
  Year 2010 Publication 13th International Conference of the Catalan Association for Artificial Intelligence Abbreviated Journal  
  Volume 220 Issue Pages 193–200  
  Keywords  
  Abstract Sequential learning is that discipline of machine learning that deals with dependent data. In this paper, we use the Multi-scale Stacked Sequential Learning approach (MSSL) to solve the task of pixel-wise classification based on contextual information. The main contribution of this work is a shifting technique applied during the testing phase that makes possible, thanks to template images, to classify objects at different sizes. The results show that the proposed method robustly classifies such objects capturing their spatial relationships.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor (up) R. Alquezar, A. Moreno, J. Aguilar  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-60750-642-3 Medium  
  Area Expedition Conference CCIA  
  Notes HUPBA;MILAB Approved no  
  Call Number BCNPCL @ bcnpcl @ PEP2010 Serial 1448  
Permanent link to this record
 

 
Author Sergio Escalera; Oriol Pujol; Eric Laciar; Jordi Vitria; Esther Pueyo; Petia Radeva edit   pdf
doi  openurl
  Title Classification of Coronary Damage in Chronic Chagasic Patients Type Book Chapter
  Year 2010 Publication Intelligent Systems – From Theory to Practice. Studies in Computational Intelligence Abbreviated Journal  
  Volume 299 Issue Pages 461-478  
  Keywords Chagas disease; Error-Correcting Output Codes; High resolution ECG; Decoding  
  Abstract Post Conference IEEE-IS 2008
The Chagas’ disease is endemic in all Latin America, affecting millions of people in the continent. In order to diagnose and treat the chagas’ disease, it is important to detect and measure the coronary damage of the patient. In this paper,
we analyze and categorize patients into different groups based on the coronary damage produced by the disease. Based on the features of the heart cycle extracted using high resolution ECG, a multi-class scheme of Error-Correcting Output Codes (ECOC)is formulated and successfully applied. The results show that the proposed scheme obtains significant performance improvements compared to previous works and state-of-the-art ECOC designs.
 
  Address  
  Corporate Author Thesis  
  Publisher Springer-Verlag Place of Publication Editor (up) V. Sgurev, M. Hadjiski (eds)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes OR;MILAB;HUPBA;MV Approved no  
  Call Number BCNPCL @ bcnpcl @ EPL2010 Serial 1452  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: