|   | 
Details
   web
Records
Author Francisco Cruz
Title Probabilistic Graphical Models for Document Analysis Type Book Whole
Year 2016 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Latest advances in digitization techniques have fostered the interest in creating digital copies of collections of documents. Digitized documents permit an easy maintenance, loss-less storage, and efficient ways for transmission and to perform information retrieval processes. This situation has opened a new market niche to develop systems able to automatically extract and analyze information contained in these collections, specially in the ambit of the business activity.

Due to the great variety of types of documents this is not a trivial task. For instance, the automatic extraction of numerical data from invoices differs substantially from a task of text recognition in historical documents. However, in order to extract the information of interest, is always necessary to identify the area of the document where it is located. In the area of Document Analysis we refer to this process as layout analysis, which aims at identifying and categorizing the different entities that compose the document, such as text regions, pictures, text lines, or tables, among others. To perform this task it is usually necessary to incorporate a prior knowledge about the task into the analysis process, which can be modeled by defining a set of contextual relations between the different entities of the document. The use of context has proven to be useful to reinforce the recognition process and improve the results on many computer vision tasks. It presents two fundamental questions: What kind of contextual information is appropriate for a given task, and how to incorporate this information into the models.

In this thesis we study several ways to incorporate contextual information to the task of document layout analysis, and to the particular case of handwritten text line segmentation. We focus on the study of Probabilistic Graphical Models and other mechanisms for this purpose, and propose several solutions to these problems. First, we present a method for layout analysis based on Conditional Random Fields. With this model we encode local contextual relations between variables, such as pair-wise constraints. Besides, we encode a set of structural relations between different classes of regions at feature level. Second, we present a method based on 2D-Probabilistic Context-free Grammars to encode structural and hierarchical relations. We perform a comparative study between Probabilistic Graphical Models and this syntactic approach. Third, we propose a method for structured documents based on Bayesian Networks to represent the document structure, and an algorithm based in the Expectation-Maximization to find the best configuration of the page. We perform a thorough evaluation of the proposed methods on two particular collections of documents: a historical collection composed of ancient structured documents, and a collection of contemporary documents. In addition, we present a general method for the task of handwritten text line segmentation. We define a probabilistic framework where we combine the EM algorithm with variational approaches for computing inference and parameter learning on a Markov Random Field. We evaluate our method on several collections of documents, including a general dataset of annotated administrative documents. Results demonstrate the applicability of our method to real problems, and the contribution of the use of contextual information to this kind of problems.
Address
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor (down) Oriol Ramos Terrades
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-945373-2-5 Medium
Area Expedition Conference
Notes DAG Approved no
Call Number Admin @ si @ Cru2016 Serial 2861
Permanent link to this record
 

 
Author Ariel Amato
Title Environment-Independent Moving Cast Shadow Suppression in Video Surveillance Type Book Whole
Year 2012 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract This thesis is devoted to moving shadows detection and suppression. Shadows could be defined as the parts of the scene that are not directly illuminated by a light source due to obstructing object or objects. Often, moving shadows in images sequences are undesirable since they could cause degradation of the expected results during processing of images for object detection, segmentation, scene surveillance or similar purposes. In this thesis first moving shadow detection methods are exhaustively overviewed. Beside the mentioned methods from literature and to compensate their limitations a new moving shadow detection method is proposed. It requires no prior knowledge about the scene, nor is it restricted to assumptions about specific scene structures. Furthermore, the technique can detect both achromatic and chromatic shadows even in the presence of camouflage that occurs when foreground regions are very similar in color to shadowed regions. The method exploits local color constancy properties due to reflectance suppression over shadowed regions. To detect shadowed regions in a scene the values of the background image are divided by values of the current frame in the RGB color space. In the thesis how this luminance ratio can be used to identify segments with low gradient constancy is shown, which in turn distinguish shadows from foreground. Experimental results on a collection of publicly available datasets illustrate the superior performance of the proposed method compared with the most sophisticated state-of-the-art shadow detection algorithms. These results show that the proposed approach is robust and accurate over a broad range of shadow types and challenging video conditions.
Address
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor (down) Mikhail Mozerov;Jordi Gonzalez
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ISE Approved no
Call Number Admin @ si @ Ama2012 Serial 2201
Permanent link to this record
 

 
Author Susana Alvarez
Title Revisión de la teoría de los Textons Enfoque computacional en color Type Book Whole
Year 2012 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract El color y la textura son dos estímulos visuales importantes para la interpretación de las imágenes. La definición de descriptores computacionales que combinan estas dos características es aún un problema abierto. La dificultad se deriva esencialmente de la propia naturaleza de ambas, mientras que la textura es una propiedad de una región, el color es una propiedad de un punto.

Hasta ahora se han utilizado tres los tipos de aproximaciones para la combinación, (a) se describe la textura directamente en cada uno de los canales color, (b) se describen textura y color por separado y se combinan al final, y (c) la combinación se realiza con técnicas de aprendizaje automático. Considerando que este problema se resuelve en el sistema visual humano en niveles muy tempranos, en esta tesis se propone estudiar el problema a partir de la implementación directa de una teoría perceptual, la teoría de los textons, y explorar así su extensión a color.

Puesto que la teoría de los textons se basa en la descripción de la textura a partir de las densidades de los atributos locales, esto se adapta perfectamente al marco de trabajo de los descriptores holísticos (bag-of-words). Se han estudiado diversos descriptores basados en diferentes espacios de textons, y diferentes representaciones de las imágenes. Asimismo se ha estudiado la viabilidad de estos descriptores en una representación conceptual de nivel intermedio.

Los descriptores propuestos han demostrado ser muy eficientes en aplicaciones de recuperación y clasificación de imágenes, presentando ventajas en la generación de vocabularios. Los vocabularios se obtienen cuantificando directamente espacios de baja dimensión y la perceptualidad de estos espacios permite asociar semántica de bajo nivel a las palabras visuales. El estudio de los resultados permite concluir que si bien la aproximación holística es muy eficiente, la introducción de co-ocurrencia espacial de las propiedades de forma y color de los blobs de la imagen es un elemento clave para su combinación, hecho que no contradice las evidencias en percepción
Address
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor (down) Maria Vanrell;Xavier Otazu
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes CIC Approved no
Call Number Alv2012b Serial 2216
Permanent link to this record
 

 
Author Hassan Ahmed Sial
Title Estimating Light Effects from a Single Image: Deep Architectures and Ground-Truth Generation Type Book Whole
Year 2021 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract In this thesis, we explore how to estimate the effects of the light interacting with the scene objects from a single image. To achieve this goal, we focus on recovering intrinsic components like reflectance, shading, or light properties such as color and position using deep architectures. The success of these approaches relies on training on large and diversified image datasets. Therefore, we present several contributions on this such as: (a) a data-augmentation technique; (b) a ground-truth for an existing multi-illuminant dataset; (c) a family of synthetic datasets, SID for Surreal Intrinsic Datasets, with diversified backgrounds and coherent light conditions; and (d) a practical pipeline to create hybrid ground-truths to overcome the complexity of acquiring realistic light conditions in a massive way. In parallel with the creation of datasets, we trained different flexible encoder-decoder deep architectures incorporating physical constraints from the image formation models.

In the last part of the thesis, we apply all the previous experience to two different problems. Firstly, we create a large hybrid Doc3DShade dataset with real shading and synthetic reflectance under complex illumination conditions, that is used to train a two-stage architecture that improves the character recognition task in complex lighting conditions of unwrapped documents. Secondly, we tackle the problem of single image scene relighting by extending both, the SID dataset to present stronger shading and shadows effects, and the deep architectures to use intrinsic components to estimate new relit images.
Address September 2021
Corporate Author Thesis Ph.D. thesis
Publisher IMPRIMA Place of Publication Editor (down) Maria Vanrell;Ramon Baldrich
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-122714-8-5 Medium
Area Expedition Conference
Notes CIC; Approved no
Call Number Admin @ si @ Sia2021 Serial 3607
Permanent link to this record
 

 
Author Javier Vazquez
Title Colour Constancy in Natural Through Colour Naming and Sensor Sharpening Type Book Whole
Year 2011 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Colour is derived from three physical properties: incident light, object reflectance and sensor sensitivities. Incident light varies under natural conditions; hence, recovering scene illuminant is an important issue in computational colour. One way to deal with this problem under calibrated conditions is by following three steps, 1) building a narrow-band sensor basis to accomplish the diagonal model, 2) building a feasible set of illuminants, and 3) defining criteria to select the best illuminant. In this work we focus on colour constancy for natural images by introducing perceptual criteria in the first and third stages.
To deal with the illuminant selection step, we hypothesise that basic colour categories can be used as anchor categories to recover the best illuminant. These colour names are related to the way that the human visual system has evolved to encode relevant natural colour statistics. Therefore the recovered image provides the best representation of the scene labelled with the basic colour terms. We demonstrate with several experiments how this selection criterion achieves current state-of-art results in computational colour constancy. In addition to this result, we psychophysically prove that usual angular error used in colour constancy does not correlate with human preferences, and we propose a new perceptual colour constancy evaluation.
The implementation of this selection criterion strongly relies on the use of a diagonal
model for illuminant change. Consequently, the second contribution focuses on building an appropriate narrow-band sensor basis to represent natural images. We propose to use the spectral sharpening technique to compute a unique narrow-band basis optimised to represent a large set of natural reflectances under natural illuminants and given in the basis of human cones. The proposed sensors allow predicting unique hues and the World colour Survey data independently of the illuminant by using a compact singularity function. Additionally, we studied different families of sharp sensors to minimise different perceptual measures. This study brought us to extend the spherical sampling procedure from 3D to 6D.
Several research lines still remain open. One natural extension would be to measure the
effects of using the computed sharp sensors on the category hypothesis, while another might be to insert spatial contextual information to improve category hypothesis. Finally, much work still needs to be done to explore how individual sensors can be adjusted to the colours in a scene.
Address
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor (down) Maria Vanrell;Graham D. Finlayson
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes CIC Approved no
Call Number Admin @ si @ Vaz2011a Serial 1785
Permanent link to this record
 

 
Author Jordi Roca
Title Constancy and inconstancy in categorical colour perception Type Book Whole
Year 2012 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract To recognise objects is perhaps the most important task an autonomous system, either biological or artificial needs to perform. In the context of human vision, this is partly achieved by recognizing the colour of surfaces despite changes in the wavelength distribution of the illumination, a property called colour constancy. Correct surface colour recognition may be adequately accomplished by colour category matching without the need to match colours precisely, therefore categorical colour constancy is likely to play an important role for object identification to be successful. The main aim of this work is to study the relationship between colour constancy and categorical colour perception. Previous studies of colour constancy have shown the influence of factors such the spatio-chromatic properties of the background, individual observer's performance, semantics, etc. However there is very little systematic study of these influences. To this end, we developed a new approach to colour constancy which includes both individual observers' categorical perception, the categorical structure of the background, and their interrelations resulting in a more comprehensive characterization of the phenomenon. In our study, we first developed a new method to analyse the categorical structure of 3D colour space, which allowed us to characterize individual categorical colour perception as well as quantify inter-individual variations in terms of shape and centroid location of 3D categorical regions. Second, we developed a new colour constancy paradigm, termed chromatic setting, which allows measuring the precise location of nine categorically-relevant points in colour space under immersive illumination. Additionally, we derived from these measurements a new colour constancy index which takes into account the magnitude and orientation of the chromatic shift, memory effects and the interrelations among colours and a model of colour naming tuned to each observer/adaptation state. Our results lead to the following conclusions: (1) There exists large inter-individual variations in the categorical structure of colour space, and thus colour naming ability varies significantly but this is not well predicted by low-level chromatic discrimination ability; (2) Analysis of the average colour naming space suggested the need for an additional three basic colour terms (turquoise, lilac and lime) for optimal colour communication; (3) Chromatic setting improved the precision of more complex linear colour constancy models and suggested that mechanisms other than cone gain might be best suited to explain colour constancy; (4) The categorical structure of colour space is broadly stable under illuminant changes for categorically balanced backgrounds; (5) Categorical inconstancy exists for categorically unbalanced backgrounds thus indicating that categorical information perceived in the initial stages of adaptation may constrain further categorical perception.
Address
Corporate Author Thesis Ph.D. thesis
Publisher Place of Publication Editor (down) Maria Vanrell;C. Alejandro Parraga
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes CIC Approved no
Call Number Admin @ si @ Roc2012 Serial 2893
Permanent link to this record
 

 
Author Robert Benavente
Title A Parametric Model for Computational Colour Naming Type Book Whole
Year 2007 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords PhD Thesis
Abstract
Address
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor (down) Maria Vanrell
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes CIC Approved no
Call Number CAT @ cat @ Ben2007 Serial 1108
Permanent link to this record
 

 
Author Ivet Rafegas
Title Color in Visual Recognition: from flat to deep representations and some biological parallelisms Type Book Whole
Year 2017 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Visual recognition is one of the main problems in computer vision that attempts to solve image understanding by deciding what objects are in images. This problem can be computationally solved by using relevant sets of visual features, such as edges, corners, color or more complex object parts. This thesis contributes to how color features have to be represented for recognition tasks.

Image features can be extracted following two different approaches. A first approach is defining handcrafted descriptors of images which is then followed by a learning scheme to classify the content (named flat schemes in Kruger et al. (2013). In this approach, perceptual considerations are habitually used to define efficient color features. Here we propose a new flat color descriptor based on the extension of color channels to boost the representation of spatio-chromatic contrast that surpasses state-of-the-art approaches. However, flat schemes present a lack of generality far away from the capabilities of biological systems. A second approach proposes evolving these flat schemes into a hierarchical process, like in the visual cortex. This includes an automatic process to learn optimal features. These deep schemes, and more specifically Convolutional Neural Networks (CNNs), have shown an impressive performance to solve various vision problems. However, there is a lack of understanding about the internal representation obtained, as a result of automatic learning. In this thesis we propose a new methodology to explore the internal representation of trained CNNs by defining the Neuron Feature as a visualization of the intrinsic features encoded in each individual neuron. Additionally, and inspired by physiological techniques, we propose to compute different neuron selectivity indexes (e.g., color, class, orientation or symmetry, amongst others) to label and classify the full CNN neuron population to understand learned representations.

Finally, using the proposed methodology, we show an in-depth study on how color is represented on a specific CNN, trained for object recognition, that competes with primate representational abilities (Cadieu et al (2014)). We found several parallelisms with biological visual systems: (a) a significant number of color selectivity neurons throughout all the layers; (b) an opponent and low frequency representation of color oriented edges and a higher sampling of frequency selectivity in brightness than in color in 1st layer like in V1; (c) a higher sampling of color hue in the second layer aligned to observed hue maps in V2; (d) a strong color and shape entanglement in all layers from basic features in shallower layers (V1 and V2) to object and background shapes in deeper layers (V4 and IT); and (e) a strong correlation between neuron color selectivities and color dataset bias.
Address November 2017
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor (down) Maria Vanrell
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-945373-7-0 Medium
Area Expedition Conference
Notes CIC Approved no
Call Number Admin @ si @ Raf2017 Serial 3100
Permanent link to this record
 

 
Author David Aldavert
Title Efficient and Scalable Handwritten Word Spotting on Historical Documents using Bag of Visual Words Type Book Whole
Year 2021 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Word spotting can be defined as the pattern recognition tasked aimed at locating and retrieving a specific keyword within a document image collection without explicitly transcribing the whole corpus. Its use is particularly interesting when applied in scenarios where Optical Character Recognition performs poorly or can not be used at all. This thesis focuses on such a scenario, word spotting on historical handwritten documents that have been written by a single author or by multiple authors with a similar calligraphy.
This problem requires a visual signature that is robust to image artifacts, flexible to accommodate script variations and efficient to retrieve information in a rapid manner. For this, we have developed a set of word spotting methods that on their foundation use the well known Bag-of-Visual-Words (BoVW) representation. This representation has gained popularity among the document image analysis community to characterize handwritten words
in an unsupervised manner. However, most approaches on this field rely on a basic BoVW configuration and disregard complex encoding and spatial representations. We determine which BoVW configurations provide the best performance boost to a spotting system.
Then, we extend the segmentation-based word spotting, where word candidates are given a priori, to segmentation-free spotting. The proposed approach seeds the document images with overlapping word location candidates and characterizes them with a BoVW signature. Retrieval is achieved comparing the query and candidate signatures and returning the locations that provide a higher consensus. This is a simple but powerful approach that requires a more compact signature than in a segmentation-based scenario. We first
project the BoVW signature into a reduced semantic topics space and then compress it further using Product Quantizers. The resulting signature only requires a few dozen bytes, allowing us to index thousands of pages on a common desktop computer. The final system still yields a performance comparable to the state-of-the-art despite all the information loss during the compression phases.
Afterwards, we also study how to combine different modalities of information in order to create a query-by-X spotting system where, words are indexed using an information modality and queries are retrieved using another. We consider three different information modalities: visual, textual and audio. Our proposal is to create a latent feature space where features which are semantically related are projected onto the same topics. Creating thus a new feature space where information from different modalities can be compared. Later, we consider the codebook generation and descriptor encoding problem. The codebooks used to encode the BoVW signatures are usually created using an unsupervised clustering algorithm and, they require to test multiple parameters to determine which configuration is best for a certain document collection. We propose a semantic clustering algorithm which allows to estimate the best parameter from data. Since gather annotated data is costly, we use synthetically generated word images. The resulting codebook is database agnostic, i. e. a codebook that yields a good performance on document collections that use the same script. We also propose the use of an additional codebook to approximate descriptors and reduce the descriptor encoding
complexity to sub-linear.
Finally, we focus on the problem of signatures dimensionality. We propose a new symbol probability signature where each bin represents the probability that a certain symbol is present a certain location of the word image. This signature is extremely compact and combined with compression techniques can represent word images with just a few bytes per signature.
Address April 2021
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor (down) Marçal Rusiñol;Josep Llados
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-122714-5-4 Medium
Area Expedition Conference
Notes DAG; 600.121 Approved no
Call Number Admin @ si @ Ald2021 Serial 3601
Permanent link to this record
 

 
Author Fei Yang
Title Towards Practical Neural Image Compression Type Book Whole
Year 2021 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Images and videos are pervasive in our life and communication. With advances in smart and portable devices, high capacity communication networks and high definition cinema, image and video compression are more relevant than ever. Traditional block-based linear transform codecs such as JPEG, H.264/AVC or the recent H.266/VVC are carefully designed to meet not only the rate-distortion criteria, but also the practical requirements of applications.
Recently, a new paradigm based on deep neural networks (i.e., neural image/video compression) has become increasingly popular due to its ability to learn powerful nonlinear transforms and other coding tools directly from data instead of being crafted by humans, as was usual in previous coding formats. While achieving excellent rate-distortion performance, these approaches are still limited mostly to research environments due to heavy models and other practical limitations, such as being limited to function on a particular rate and due to high memory and computational cost. In this thesis, we study these practical limitations, and designing more practical neural image compression approaches.
After analyzing the differences between traditional and neural image compression, our first contribution is the modulated autoencoder (MAE), a framework that includes a mechanism to provide multiple rate-distortion options within a single model with comparable performance to independent models. In a second contribution, we propose the slimmable compressive autoencoder (SlimCAE), which in addition to variable rate, can optimize the complexity of the model and thus reduce significantly the memory and computational burden.
Modern generative models can learn custom image transformation directly from suitable datasets following encoder-decoder architectures, task known as image-to-image (I2I) translation. Building on our previous work, we study the problem of distributed I2I translation, where the latent representation is transmitted through a binary channel and decoded in a remote receiving side. We also propose a variant that can perform both translation and the usual autoencoding functionality.
Finally, we also consider neural video compression, where the autoencoder is typically augmented with temporal prediction via motion compensation. One of the main bottlenecks of that framework is the optical flow module that estimates the displacement to predict the next frame. Focusing on this module, we propose a method that improves the accuracy of the optical flow estimation and a simplified variant that reduces the computational cost.
Key words: neural image compression, neural video compression, optical flow, practical neural image compression, compressive autoencoders, image-to-image translation, deep learning.
Address December 2021
Corporate Author Thesis Ph.D. thesis
Publisher IMPRIMA Place of Publication Editor (down) Luis Herranz;Mikhail Mozerov;Yongmei Cheng
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-122714-7-8 Medium
Area Expedition Conference
Notes LAMP Approved no
Call Number Admin @ si @ Yan2021 Serial 3608
Permanent link to this record
 

 
Author Kai Wang
Title Continual learning for hierarchical classification, few-shot recognition, and multi-modal learning Type Book Whole
Year 2022 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Deep learning has drastically changed computer vision in the past decades and achieved great success in many applications, such as image classification, retrieval, detection, and segmentation thanks to the emergence of neural networks. Typically, for most applications, these networks are presented with examples from all tasks they are expected to perform. However, for many applications, this is not a realistic
scenario, and an algorithm is required to learn tasks sequentially. Continual learning proposes theory and methods for this scenario.
The main challenge for continual learning systems is called catastrophic forgetting and refers to a significant drop in performance on previous tasks. To tackle this problem, three main branches of methods have been explored to alleviate the forgetting in continual learning. They are regularization-based methods, rehearsalbased methods, and parameter isolation-based methods. However, most of them are focused on image classification tasks. Continual learning of many computer vision fields has still not been well-explored. Thus, in this thesis, we extend the continual learning knowledge to meta learning, we propose a method for the incremental learning of hierarchical relations for image classification, we explore image recognition in online continual learning, and study continual learning for cross-modal learning.
In this thesis, we explore the usage of image rehearsal when addressing the incremental meta learning problem. Observing that existingmethods fail to improve performance with saved exemplars, we propose to mix exemplars with current task data and episode-level distillation to overcome forgetting in incremental meta learning. Next, we study a more realistic image classification scenario where each class has multiple granularity levels. Only one label is present at any time, which requires the model to infer if the provided label has a hierarchical relation with any already known label. In experiments, we show that the estimated hierarchy information can be beneficial in both the training and inference stage.
For the online continual learning setting, we investigate the usage of intermediate feature replay. In this case, the training samples are only observed by the model only one time. Here we fix thememory buffer for feature replay and compare the effectiveness of saving features from different layers. Finally, we investigate multi-modal continual learning, where an image encoder is cooperating with a semantic branch. We consider the continual learning of both zero-shot learning and cross-modal retrieval problems.
Address July, 2022
Corporate Author Thesis Ph.D. thesis
Publisher Place of Publication Editor (down) Luis Herranz;Joost Van de Weijer
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-124793-2-4 Medium
Area Expedition Conference
Notes LAMP Approved no
Call Number Admin @ si @ Wan2022 Serial 3714
Permanent link to this record
 

 
Author A. Pujol
Title Contributions to shape and texture face similarity measurement. Type Book Whole
Year 2001 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis Ph.D. thesis
Publisher Place of Publication Editor (down) JuanJose Villanueva
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Admin @ si @ Puj2001 Serial 202
Permanent link to this record
 

 
Author Partha Pratim Roy
Title Multi-Oriented and Multi-Scaled Text Character Analysis and Recognition in Graphical Documents and their Applications to Document Image Retrieval Type Book Whole
Year 2010 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract With the advent research of Document Image Analysis and Recognition (DIAR), an
important line of research is explored on indexing and retrieval of graphics rich documents. It aims at finding relevant documents relying on segmentation and recognition
of text and graphics components underlying in non-standard layout where commercial
OCRs can not be applied due to complexity. This thesis is focused towards text information extraction approaches in graphical documents and retrieval of such documents
using text information.
Automatic text recognition in graphical documents (map, engineering drawing,
etc.) involves many challenges because text characters are usually printed in multioriented and multi-scale way along with different graphical objects. Text characters
are used to annotate the graphical curve lines and hence, many times they follow
curvi-linear paths too. For OCR of such documents, individual text lines and their
corresponding words/characters need to be extracted.
For recognition of multi-font, multi-scale and multi-oriented characters, we have
proposed a feature descriptor for character shape using angular information from contour pixels to take care of the invariance nature. To improve the efficiency of OCR, an
approach towards the segmentation of multi-oriented touching strings into individual
characters is also discussed. Convex hull based background information is used to
segment a touching string into possible primitive segments and later these primitive
segments are merged to get optimum segmentation using dynamic programming. To
overcome the touching/overlapping problem of text with graphical lines, a character
spotting approach using SIFT and skeleton information is included. Afterwards, we
propose a novel method to extract individual curvi-linear text lines using the foreground and background information of the characters of the text and a water reservoir
concept is used to utilize the background information.
We have also formulated the methodologies for graphical document retrieval applications using query words and seals. The retrieval approaches are performed using
recognition results of individual components in the document. Given a query text,
the system extracts positional knowledge from the query word and uses the same to
generate hypothetical locations in the document. Indexing of documents is also performed based on automatic detection of seals from documents containing cluttered
background. A seal is characterized by scale and rotation invariant spatial feature
descriptors computed from labelled text characters and a concept based on the Generalized Hough Transform is used to locate the seal in documents.
Address
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor (down) Josep Llados;Umapada Pal
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-937261-7-1 Medium
Area Expedition Conference
Notes Approved no
Call Number Admin @ si @ Roy2010 Serial 1455
Permanent link to this record
 

 
Author Anjan Dutta
Title Inexact Subgraph Matching Applied to Symbol Spotting in Graphical Documents Type Book Whole
Year 2014 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract There is a resurgence in the use of structural approaches in the usual object recognition and retrieval problem. Graph theory, in particular, graph matching plays a relevant role in that. Specifically, the detection of an object (or a part of that) in an image in terms of structural features can be formulated as a subgraph matching. Subgraph matching is a challenging task. Specially due to the presence of outliers most of the graph matching algorithms do not perform well in subgraph matching scenario. Also exact subgraph isomorphism has proven to be an NP-complete problem. So naturally, in graph matching community, there are lot of efforts addressing the problem of subgraph matching within suboptimal bound. Most of them work with approximate algorithms that try to get an inexact solution in estimated way. In addition, usual recognition must cope with distortion. Inexact graph matching consists in finding the best isomorphism under a similarity measure. Theoretically this thesis proposes algorithms for solving subgraph matching in an approximate and inexact way.
We consider the symbol spotting problem on graphical documents or line drawings from application point of view. This is a well known problem in the graphics recognition community. It can be further applied for indexing and classification of documents based on their contents. The structural nature of this kind of documents easily motivates one for giving a graph based representation. So the symbol spotting problem on graphical documents can be considered as a subgraph matching problem. The main challenges in this application domain is the noise and distortions that might come during the usage, digitalization and raster to vector conversion of those documents. Apart from that computer vision nowadays is not any more confined within a limited number of images. So dealing a huge number of images with graph based method is a further challenge.
In this thesis, on one hand, we have worked on efficient and robust graph representation to cope with the noise and distortions coming from documents. On the other hand, we have worked on different graph based methods and framework to solve the subgraph matching problem in a better approximated way, which can also deal with considerable number of images. Firstly, we propose a symbol spotting method by hashing serialized subgraphs. Graph serialization allows to create factorized substructures such as graph paths, which can be organized in hash tables depending on the structural similarities of the serialized subgraphs. The involvement of hashing techniques helps to reduce the search space substantially and speeds up the spotting procedure. Secondly, we introduce contextual similarities based on the walk based propagation on tensor product graph. These contextual similarities involve higher order information and more reliable than pairwise similarities. We use these higher order similarities to formulate subgraph matching as a node and edge selection problem in the tensor product graph. Thirdly, we propose near convex grouping to form near convex region adjacency graph which eliminates the limitations of traditional region adjacency graph representation for graphic recognition. Fourthly, we propose a hierarchical graph representation by simplifying/correcting the structural errors to create a hierarchical graph of the base graph. Later these hierarchical graph structures are matched with some graph matching methods. Apart from that, in this thesis we have provided an overall experimental comparison of all the methods and some of the state-of-the-art methods. Furthermore, some dataset models have also been proposed.
Address
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor (down) Josep Llados;Umapada Pal
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-940902-4-0 Medium
Area Expedition Conference
Notes DAG; 600.077 Approved no
Call Number Admin @ si @ Dut2014 Serial 2465
Permanent link to this record
 

 
Author Sounak Dey
Title Mapping between Images and Conceptual Spaces: Sketch-based Image Retrieval Type Book Whole
Year 2020 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract This thesis presents several contributions to the literature of sketch based image retrieval (SBIR). In SBIR the first challenge we face is how to map two different domains to common space for effective retrieval of images, while tackling the different levels of abstraction people use to express their notion of objects around while sketching. To this extent we first propose a cross-modal learning framework that maps both sketches and text into a joint embedding space invariant to depictive style, while preserving semantics. Then we have also investigated different query types possible to encompass people's dilema in sketching certain world objects. For this we propose an approach for multi-modal image retrieval in multi-labelled images. A multi-modal deep network architecture is formulated to jointly model sketches and text as input query modalities into a common embedding space, which is then further aligned with the image feature space. This permits encoding the object-based features and its alignment with the query irrespective of the availability of the co-occurrence of different objects in the training set.

Finally, we explore the problem of zero-shot sketch-based image retrieval (ZS-SBIR), where human sketches are used as queries to conduct retrieval of photos from unseen categories. We importantly advance prior arts by proposing a novel ZS-SBIR scenario that represents a firm step forward in its practical application. The new setting uniquely recognises two important yet often neglected challenges of practical ZS-SBIR, (i) the large domain gap between amateur sketch and photo, and (ii) the necessity for moving towards large-scale retrieval. We first contribute to the community a novel ZS-SBIR dataset, QuickDraw-Extended. We also in this dissertation pave the path to the future direction of research in this domain.
Address
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor (down) Josep Llados;Umapada Pal
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-121011-8-8 Medium
Area Expedition Conference
Notes DAG; 600.121 Approved no
Call Number Admin @ si @ Dey20 Serial 3480
Permanent link to this record