|   | 
Details
   web
Records
Author Albert Clapes; Julio C. S. Jacques Junior; Carla Morral; Sergio Escalera
Title ChaLearn LAP 2020 Challenge on Identity-preserved Human Detection: Dataset and Results Type Conference Article
Year 2020 Publication 15th IEEE International Conference on Automatic Face and Gesture Recognition Abbreviated Journal
Volume Issue Pages 801-808
Keywords
Abstract This paper summarizes the ChaLearn Looking at People 2020 Challenge on Identity-preserved Human Detection (IPHD). For the purpose, we released a large novel dataset containing more than 112K pairs of spatiotemporally aligned depth and thermal frames (and 175K instances of humans) sampled from 780 sequences. The sequences contain hundreds of non-identifiable people appearing in a mix of in-the-wild and scripted scenarios recorded in public and private places. The competition was divided into three tracks depending on the modalities exploited for the detection: (1) depth, (2) thermal, and (3) depth-thermal fusion. Color was also captured but only used to facilitate the groundtruth annotation. Still the temporal synchronization of three sensory devices is challenging, so bad temporal matches across modalities can occur. Hence, the labels provided should considered “weak”, although test frames were carefully selected to minimize this effect and ensure the fairest comparison of the participants’ results. Despite this added difficulty, the results got by the participants demonstrate current fully-supervised methods can deal with that and achieve outstanding detection performance when measured in terms of AP@0.50.
Address Virtual; November 2020
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference (down) FG
Notes HUPBA Approved no
Call Number Admin @ si @ CJM2020 Serial 3501
Permanent link to this record
 

 
Author Josep Famadas; Meysam Madadi; Cristina Palmero; Sergio Escalera
Title Generative Video Face Reenactment by AUs and Gaze Regularization Type Conference Article
Year 2020 Publication 15th IEEE International Conference on Automatic Face and Gesture Recognition Abbreviated Journal
Volume Issue Pages 444-451
Keywords
Abstract In this work, we propose an encoder-decoder-like architecture to perform face reenactment in image sequences. Our goal is to transfer the training subject identity to a given test subject. We regularize face reenactment by facial action unit intensity and 3D gaze vector regression. This way, we enforce the network to transfer subtle facial expressions and eye dynamics, providing a more lifelike result. The proposed encoder-decoder receives as input the previous sequence frame stacked to the current frame image of facial landmarks. Thus, the generated frames benefit from appearance and geometry, while keeping temporal coherence for the generated sequence. At test stage, a new target subject with the facial performance of the source subject and the appearance of the training subject is reenacted. Principal component analysis is applied to project the test subject geometry to the closest training subject geometry before reenactment. Evaluation of our proposal shows faster convergence, and more accurate and realistic results in comparison to other architectures without action units and gaze regularization.
Address Virtual; November 2020
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference (down) FG
Notes HUPBA Approved no
Call Number Admin @ si @ FMP2020 Serial 3517
Permanent link to this record
 

 
Author Albert Rial-Farras; Meysam Madadi; Sergio Escalera
Title UV-based reconstruction of 3D garments from a single RGB image Type Conference Article
Year 2021 Publication 16th IEEE International Conference on Automatic Face and Gesture Recognition Abbreviated Journal
Volume Issue Pages 1-8
Keywords
Abstract Garments are highly detailed and dynamic objects made up of particles that interact with each other and with other objects, making the task of 2D to 3D garment reconstruction extremely challenging. Therefore, having a lightweight 3D representation capable of modelling fine details is of great importance. This work presents a deep learning framework based on Generative Adversarial Networks (GANs) to reconstruct 3D garment models from a single RGB image. It has the peculiarity of using UV maps to represent 3D data, a lightweight representation capable of dealing with high-resolution details and wrinkles. With this model and kind of 3D representation, we achieve state-of-the-art results on the CLOTH3D++ dataset, generating good quality and realistic garment reconstructions regardless of the garment topology and shape, human pose, occlusions and lightning.
Address Virtual; December 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference (down) FG
Notes HUPBA; no proj Approved no
Call Number Admin @ si @ RME2021 Serial 3639
Permanent link to this record
 

 
Author Hugo Bertiche; Meysam Madadi; Sergio Escalera
Title Deep Parametric Surfaces for 3D Outfit Reconstruction from Single View Image Type Conference Article
Year 2021 Publication 16th IEEE International Conference on Automatic Face and Gesture Recognition Abbreviated Journal
Volume Issue Pages 1-8
Keywords
Abstract We present a methodology to retrieve analytical surfaces parametrized as a neural network. Previous works on 3D reconstruction yield point clouds, voxelized objects or meshes. Instead, our approach yields 2-manifolds in the euclidean space through deep learning. To this end, we implement a novel formulation for fully connected layers as parametrized manifolds that allows continuous predictions with differential geometry. Based on this property we propose a novel smoothness loss. Results on CLOTH3D++ dataset show the possibility to infer different topologies and the benefits of the smoothness term based on differential geometry.
Address Virtual; December 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference (down) FG
Notes HUPBA; no proj Approved no
Call Number Admin @ si @ BME2021 Serial 3640
Permanent link to this record
 

 
Author Olivier Penacchio; Laura Dempere-Marco; Xavier Otazu
Title A Neurodynamical Model Of Brightness Induction In V1 Following Static And Dynamic Contextual Influences Type Abstract
Year 2012 Publication 8th Federation of European Neurosciences Abbreviated Journal
Volume 6 Issue Pages 63-64
Keywords
Abstract Brightness induction is the modulation of the perceived intensity of an area by the luminance of surrounding areas. Although striate cortex is traditionally regarded as an area mostly responsive to ensory (i.e. retinal) information,
neurophysiological evidence suggests that perceived brightness information mightbe explicitly represented in V1.
Such evidence has been observed both in anesthetised cats where neuronal response modulations have been found to follow luminance changes outside the receptive felds and in human fMRI measurements. In this work, possible neural mechanisms that ofer a plausible explanation for such phenomenon are investigated. To this end, we consider the model proposed by Z.Li (Li, Network:Comput. Neural Syst., 10 (1999)) which is based on neurophysiological evidence and focuses on the part of V1 responsible for contextual infuences, i.e. layer 2-3 pyramidal cells, interneurons, and horizontal intracortical connections. This model has reproduced other phenomena such as contour detection and preattentive segmentation, which share with brightness induction the relevant efect of contextual infuences. We have extended the original model such that the input to the network is obtained from a complete multiscale and multiorientation wavelet decomposition, thereby allowing the recovery of an image refecting the perceived intensity. The proposed model successfully accounts for well known psychophysical efects for static contexts (among them: the White's and modifed White's efects, the Todorovic, Chevreul, achromatic ring patterns, and grating induction efects) and also for brigthness induction in dynamic contexts defned by modulating the luminance of surrounding areas (e.g. the brightness of a static central area is perceived to vary in antiphase to the sinusoidal luminance changes of its surroundings). This work thus suggests that intra-cortical interactions in V1 could partially explain perceptual brightness induction efects and reveals how a common general architecture may account for several different fundamental processes emerging early in the visual processing pathway.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference (down) FENS
Notes CIC Approved no
Call Number Admin @ si @ PDO2012b Serial 2181
Permanent link to this record
 

 
Author Josep Llados
Title The 5G of Document Intelligence Type Conference Article
Year 2021 Publication 3rd Workshop on Future of Document Analysis and Recognition Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address Lausanne; Suissa; September 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference (down) FDAR
Notes DAG Approved no
Call Number Admin @ si @ Serial 3677
Permanent link to this record
 

 
Author Enric Marti; Debora Gil; Carme Julia
Title A PBL experience in the teaching of Computer Graphics Type Conference Article
Year 2005 Publication EUROGRAPHICS Proceedings Abbreviated Journal
Volume 5 Issue 1 Pages 95-103
Keywords project-based learning; computer graphics education; Open GL; rendering techniques; computer animation techniques; Graphics packages; Hierarchy and geometric transformations; Animation; Color; shading; shadowing and texture; fractals; hidden line/surface removal; Problem Based Learning
Abstract Project-Based Learning (PBL) is an educational strategy to improve student’s learning capability that, in recent years, has had a progressive acceptance in undergraduate studies. This methodology is based on solving a problem or project in a student working group. In this way, PBL focuses on learning the necessary tools to correctly find a solution to given problems. Since the learning initiative is transferred to the student, the PBL method promotes students own abilities. This allows a better assessment of the true workload that carries out the student in the subject. It follows that the methodology conforms to the guidelines of the Bologna document, which quantifies the student workload in a subject by means of the European credit transfer system (ECTS). PBL is currently applied in undergraduate studies needing strong practical training such as medicine, nursing or law sciences. Although this is also the case in engineering studies, amazingly, few experiences have been reported. In this paper we propose to use PBL in the educational organization of the Computer Graphics subjects in the Computer Science degree. Our PBL project focuses in the development of a C++ graphical environment based on the OpenGL libraries for visualization and handling of different graphical objects. The starting point is a basic skeleton that already includes lighting functions, perspective projection with mouse interaction to change the point of view and three predefined objects. Students have to complete this skeleton by adding their own functions to solve the project. A total number of 10 projects have been proposed and successfully solved. The exercises range from human face rendering to articulated objects, such as robot arms or puppets. In the present paper we extensively report the statement and educational objectives for two of the projects: solar system visualization and a chess game. We report our earlier educational experience based on the standard classroom theoretical, problem and practice sessions and the reasons that motivated searching for other learning methods. We have mainly chosen PBL because it improves the student learning initiative. We have applied the PBL educational model since the beginning of the second semester. The student’s feedback increases in his interest for the subject. We present a comparative study of the teachers’ and students’ workload between PBL and the classic teaching approach, which suggests that the workload increase in PBL is not as high as it seems.
Address Dublin; Ireland; September 2005
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference (down) EUROGRAPHICS
Notes IAM;ADAS; Approved no
Call Number IAM @ iam @ MGJ2005 Serial 1593
Permanent link to this record
 

 
Author Angel Sappa; Fadi Dornaika; David Geronimo; Antonio Lopez
Title Efficient On-Board Stereo Vision Pose Estimation Type Conference Article
Year 2007 Publication Computer Aided Systems Theory, Selected paper from Abbreviated Journal
Volume 4739 Issue Pages 1183–1190
Keywords
Abstract This paper presents an efficient technique for real time estimation of on-board stereo vision system pose. The whole process is performed in the Euclidean space and consists of two stages. Initially, a compact representation of the original 3D data points is computed. Then, a RANSAC based least squares approach is used for fitting a plane to the 3D road points. Fast RANSAC fitting is obtained by selecting points according to a probability distribution function that takes into account the density of points at a given depth. Finally, stereo camera position
and orientation—pose—is computed relative to the road plane. The proposed technique is intended to be used on driver assistance systems for applications such as obstacle or pedestrian detection. A real time performance is reached. Experimental results on several environments and comparisons with a previous work are presented.
Address Las Palmas de Gran Canaria (Spain)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference (down) EUROCAST
Notes ADAS Approved no
Call Number ADAS @ adas @ SDG2007b Serial 916
Permanent link to this record
 

 
Author Angel Sappa; Rosa Herrero; Fadi Dornaika; David Geronimo; Antonio Lopez
Title Road Approximation in Euclidean and v-Disparity Space: A Comparative Study Type Conference Article
Year 2007 Publication Computer Aided Systems Theory, Abbreviated Journal
Volume 4739 Issue Pages 1105–1112
Keywords
Abstract This paper presents a comparative study between two road approximation techniques—planar surfaces—from stereo vision data. The first approach is carried out in the v-disparity space and is based on a voting scheme, the Hough transform. The second one consists in computing the best fitting plane for the whole 3D road data points, directly in the Euclidean space, by using least squares fitting. The comparative study is initially performed over a set of different synthetic surfaces
(e.g., plane, quadratic surface, cubic surface) digitized by a virtual stereo head; then real data obtained with a commercial stereo head are used. The comparative study is intended to be used as a criterion for fining the best technique according to the road geometry. Additionally, it highlights common problems driven from a wrong assumption about the scene’s prior knowledge.
Address Las Palmas de Gran Canaria (Spain)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference (down) EUROCAST
Notes ADAS Approved no
Call Number ADAS @ adas @ SHD2007b Serial 917
Permanent link to this record
 

 
Author F.Guirado; Ana Ripoll; C.Roig; Aura Hernandez-Sabate; Emilio Luque
Title Exploiting Throughput for Pipeline Execution in Streaming Image Processing Applications Type Book Chapter
Year 2006 Publication Euro-Par 2006 Parallel Processing Abbreviated Journal LNCS
Volume 4128 Issue Pages 1095-1105
Keywords 12th International Euro–Par Conference
Abstract There is a large range of image processing applications that act on an input sequence of image frames that are continuously received. Throughput is a key performance measure to be optimized when execu- ting them. In this paper we propose a new task replication methodology for optimizing throughput for an image processing application in the field of medicine. The results show that by applying the proposed methodo- logy we are able to achieve the desired throughput in all cases, in such a way that the input frames can be processed at any given rate.
Address
Corporate Author Thesis
Publisher Springer-Verlag Berlin Heidelberg Place of Publication Dresden, Germany (European Union) Editor UAB; W, E.N.; et al.
Language Summary Language Original Title
Series Editor Series Title Lecture Notes In Computer Science Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference (down) Euro–Par
Notes IAM Approved no
Call Number IAM @ iam @ GRR2006a Serial 1542
Permanent link to this record
 

 
Author Sergio Escalera; Josep Moya; Laura Igual; Veronica Violant; Maria Teresa Anguera
Title Automatic Human Behavior Analysis in ADHD Type Conference Article
Year 2012 Publication Eunethydis 2nd International ADHD Conference Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Poster
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference (down) EUNETHYDIS
Notes MILAB;HuPBA Approved no
Call Number Admin @ si @ EMI2012a Serial 2058
Permanent link to this record
 

 
Author Jorge Bernal; Fernando Vilariño; F. Javier Sanchez; M. Arnold; Anarta Ghosh; Gerard Lacey
Title Experts vs Novices: Applying Eye-tracking Methodologies in Colonoscopy Video Screening for Polyp Search Type Conference Article
Year 2014 Publication 2014 Symposium on Eye Tracking Research and Applications Abbreviated Journal
Volume Issue Pages 223-226
Keywords
Abstract We present in this paper a novel study aiming at identifying the differences in visual search patterns between physicians of diverse levels of expertise during the screening of colonoscopy videos. Physicians were clustered into two groups -experts and novices- according to the number of procedures performed, and fixations were captured by an eye-tracker device during the task of polyp search in different video sequences. These fixations were integrated into heat maps, one for each cluster. The obtained maps were validated over a ground truth consisting of a mask of the polyp, and the comparison between experts and novices was performed by using metrics such as reaction time, dwelling time and energy concentration ratio. Experimental results show a statistically significant difference between experts and novices, and the obtained maps show to be a useful tool for the characterisation of the behaviour of each group.
Address USA; March 2014
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-1-4503-2751-0 Medium
Area Expedition Conference (down) ETRA
Notes MV; 600.047; 600.060;SIAI Approved no
Call Number Admin @ si @ BVS2014 Serial 2448
Permanent link to this record
 

 
Author Cristina Palmero; Oleg V Komogortsev; Sergio Escalera; Sachin S Talathi
Title Multi-Rate Sensor Fusion for Unconstrained Near-Eye Gaze Estimation Type Conference Article
Year 2023 Publication Proceedings of the 2023 Symposium on Eye Tracking Research and Applications Abbreviated Journal
Volume Issue Pages 1-8
Keywords
Abstract The power requirements of video-oculography systems can be prohibitive for high-speed operation on portable devices. Recently, low-power alternatives such as photosensors have been evaluated, providing gaze estimates at high frequency with a trade-off in accuracy and robustness. Potentially, an approach combining slow/high-fidelity and fast/low-fidelity sensors should be able to exploit their complementarity to track fast eye motion accurately and robustly. To foster research on this topic, we introduce OpenSFEDS, a near-eye gaze estimation dataset containing approximately 2M synthetic camera-photosensor image pairs sampled at 500 Hz under varied appearance and camera position. We also formulate the task of sensor fusion for gaze estimation, proposing a deep learning framework consisting in appearance-based encoding and temporal eye-state dynamics. We evaluate several single- and multi-rate fusion baselines on OpenSFEDS, achieving 8.7% error decrease when tracking fast eye movements with a multi-rate approach vs. a gaze forecasting approach operating with a low-speed sensor alone.
Address Tubingen; Germany; May 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference (down) ETRA
Notes HUPBA Approved no
Call Number Admin @ si @ PKE2023 Serial 3923
Permanent link to this record
 

 
Author Quentin Angermann; Jorge Bernal; Cristina Sanchez Montes; Maroua Hammami; Gloria Fernandez Esparrach; Xavier Dray; Olivier Romain; F. Javier Sanchez; Aymeric Histace
Title Clinical Usability Quantification Of a Real-Time Polyp Detection Method In Videocolonoscopy Type Conference Article
Year 2017 Publication 25th United European Gastroenterology Week Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address Barcelona, October 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference (down) ESGE
Notes MV; no menciona Approved no
Call Number Admin @ si @ ABS2017c Serial 2978
Permanent link to this record
 

 
Author Cristina Sanchez Montes; F. Javier Sanchez; Cristina Rodriguez de Miguel; Henry Cordova; Jorge Bernal; Maria Lopez Ceron; Josep Llach; Gloria Fernandez Esparrach
Title Histological Prediction Of Colonic Polyps By Computer Vision. Preliminary Results Type Conference Article
Year 2017 Publication 25th United European Gastroenterology Week Abbreviated Journal
Volume Issue Pages
Keywords polyps; histology; computer vision
Abstract during colonoscopy, clinicians perform visual inspection of the polyps to predict histology. Kudo’s pit pattern classification is one of the most commonly used for optical diagnosis. These surface patterns present a contrast with respect to their neighboring regions and they can be considered as bright regions in the image that can attract the attention of computational methods.
Address Barcelona; October 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference (down) ESGE
Notes MV; no menciona Approved no
Call Number Admin @ si @ SSR2017 Serial 2979
Permanent link to this record