Bogdan Raducanu, Jordi Vitria, & D. Gatica-Perez. (2009). You are Fired! Nonverbal Role Analysis in Competitive Meetings. In IEEE International Conference on Audio, Speech and Signal Processing (1949–1952).
Abstract: This paper addresses the problem of social interaction analysis in competitive meetings, using nonverbal cues. For our study, we made use of ldquoThe Apprenticerdquo reality TV show, which features a competition for a real, highly paid corporate job. Our analysis is centered around two tasks regarding a person's role in a meeting: predicting the person with the highest status and predicting the fired candidates. The current study was carried out using nonverbal audio cues. Results obtained from the analysis of a full season of the show, representing around 90 minutes of audio data, are very promising (up to 85.7% of accuracy in the first case and up to 92.8% in the second case). Our approach is based only on the nonverbal interaction dynamics during the meeting without relying on the spoken words.
|
Saiping Zhang, Luis Herranz, Marta Mrak, Marc Gorriz Blanch, Shuai Wan, & Fuzheng Yang. (2022). DCNGAN: A Deformable Convolution-Based GAN with QP Adaptation for Perceptual Quality Enhancement of Compressed Video. In 47th International Conference on Acoustics, Speech, and Signal Processing.
Abstract: In this paper, we propose a deformable convolution-based generative adversarial network (DCNGAN) for perceptual quality enhancement of compressed videos. DCNGAN is also adaptive to the quantization parameters (QPs). Compared with optical flows, deformable convolutions are more effective and efficient to align frames. Deformable convolutions can operate on multiple frames, thus leveraging more temporal information, which is beneficial for enhancing the perceptual quality of compressed videos. Instead of aligning frames in a pairwise manner, the deformable convolution can process multiple frames simultaneously, which leads to lower computational complexity. Experimental results demonstrate that the proposed DCNGAN outperforms other state-of-the-art compressed video quality enhancement algorithms.
|
Guillem Martinez, Maya Aghaei, Martin Dijkstra, Bhalaji Nagarajan, Femke Jaarsma, Jaap van de Loosdrecht, et al. (2022). Hyper-Spectral Imaging for Overlapping Plastic Flakes Segmentation. In 47th International Conference on Acoustics, Speech, and Signal Processing.
Abstract: In this paper, we propose a deformable convolution-based generative adversarial network (DCNGAN) for perceptual quality enhancement of compressed videos. DCNGAN is also adaptive to the quantization parameters (QPs). Compared with optical flows, deformable convolutions are more effective and efficient to align frames. Deformable convolutions can operate on multiple frames, thus leveraging more temporal information, which is beneficial for enhancing the perceptual quality of compressed videos. Instead of aligning frames in a pairwise manner, the deformable convolution can process multiple frames simultaneously, which leads to lower computational complexity. Experimental results demonstrate that the proposed DCNGAN outperforms other state-of-the-art compressed video quality enhancement algorithms.
Keywords: Hyper-spectral imaging; plastic sorting; multi-label segmentation; bitfield encoding
|
Danna Xue, Luis Herranz, Javier Vazquez, & Yanning Zhang. (2023). Burst Perception-Distortion Tradeoff: Analysis and Evaluation. In IEEE International Conference on Acoustics, Speech and Signal Processing.
Abstract: Burst image restoration attempts to effectively utilize the complementary cues appearing in sequential images to produce a high-quality image. Most current methods use all the available images to obtain the reconstructed image. However, using more images for burst restoration is not always the best option regarding reconstruction quality and efficiency, as the images acquired by handheld imaging devices suffer from degradation and misalignment caused by the camera noise and shake. In this paper, we extend the perception-distortion tradeoff theory by introducing multiple-frame information. We propose the area of the unattainable region as a new metric for perception-distortion tradeoff evaluation and comparison. Based on this metric, we analyse the performance of burst restoration from the perspective of the perception-distortion tradeoff under both aligned bursts and misaligned bursts situations. Our analysis reveals the importance of inter-frame alignment for burst restoration and shows that the optimal burst length for the restoration model depends both on the degree of degradation and misalignment.
|
Yifan Wang, Luka Murn, Luis Herranz, Fei Yang, Marta Mrak, Wei Zhang, et al. (2023). Efficient Super-Resolution for Compression Of Gaming Videos. In IEEE International Conference on Acoustics, Speech and Signal Processing.
Abstract: Due to the increasing demand for game-streaming services, efficient compression of computer-generated video is more critical than ever, especially when the available bandwidth is low. This paper proposes a super-resolution framework that improves the coding efficiency of computer-generated gaming videos at low bitrates. Most state-of-the-art super-resolution networks generalize over a variety of RGB inputs and use a unified network architecture for frames of different levels of degradation, leading to high complexity and redundancy. Since games usually consist of a limited number of fixed scenarios, we specialize one model for each scenario and assign appropriate network capacities for different QPs to perform super-resolution under the guidance of reconstructed high-quality luma components. Experimental results show that our framework achieves a superior quality-complexity trade-off compared to the ESRnet baseline, saving at most 93.59% parameters while maintaining comparable performance. The compression efficiency compared to HEVC is also improved by more than 17% BD-rate gain.
|
Mingyi Yang, Luis Herranz, Fei Yang, Luka Murn, Marc Gorriz Blanch, Shuai Wan, et al. (2023). Semantic Preprocessor for Image Compression for Machines. In IEEE International Conference on Acoustics, Speech and Signal Processing.
Abstract: Visual content is being increasingly transmitted and consumed by machines rather than humans to perform automated content analysis tasks. In this paper, we propose an image preprocessor that optimizes the input image for machine consumption prior to encoding by an off-the-shelf codec designed for human consumption. To achieve a better trade-off between the accuracy of the machine analysis task and bitrate, we propose leveraging pre-extracted semantic information to improve the preprocessor’s ability to accurately identify and filter out task-irrelevant information. Furthermore, we propose a two-part loss function to optimize the preprocessor, consisted of a rate-task performance loss and a semantic distillation loss, which helps the reconstructed image obtain more information that contributes to the accuracy of the task. Experiments show that the proposed preprocessor can save up to 48.83% bitrate compared with the method without the preprocessor, and save up to 36.24% bitrate compared to existing preprocessors for machine vision.
|
Lei Kang, Lichao Zhang, & Dazhi Jiang. (2023). Learning Robust Self-Attention Features for Speech Emotion Recognition with Label-Adaptive Mixup. In IEEE International Conference on Acoustics, Speech and Signal Processing.
Abstract: Speech Emotion Recognition (SER) is to recognize human emotions in a natural verbal interaction scenario with machines, which is considered as a challenging problem due to the ambiguous human emotions. Despite the recent progress in SER, state-of-the-art models struggle to achieve a satisfactory performance. We propose a self-attention based method with combined use of label-adaptive mixup and center loss. By adapting label probabilities in mixup and fitting center loss to the mixup training scheme, our proposed method achieves a superior performance to the state-of-the-art methods.
|
Oriol Ramos Terrades, Salvatore Tabbone, & Ernest Valveny. (2007). Optimal Linear Combination for Two-class Classifiers. In Proceedings of the International Conference on Advances in Pattern Recognition.
|
Alvaro Peris, Marc Bolaños, Petia Radeva, & Francisco Casacuberta. (2016). Video Description Using Bidirectional Recurrent Neural Networks. In 25th International Conference on Artificial Neural Networks (Vol. 2, pp. 3–11).
Abstract: Although traditionally used in the machine translation field, the encoder-decoder framework has been recently applied for the generation of video and image descriptions. The combination of Convolutional and Recurrent Neural Networks in these models has proven to outperform the previous state of the art, obtaining more accurate video descriptions. In this work we propose pushing further this model by introducing two contributions into the encoding stage. First, producing richer image representations by combining object and location information from Convolutional Neural Networks and second, introducing Bidirectional Recurrent Neural Networks for capturing both forward and backward temporal relationships in the input frames.
Keywords: Video description; Neural Machine Translation; Birectional Recurrent Neural Networks; LSTM; Convolutional Neural Networks
|
Joan Serrat. (1995). Aplicacion del analisis de imagenes en radiologia. In VI National Simposium on Pattern Recognition and image Analysis.
|
V. Valev, & Petia Radeva. (1993). On the Determining of Non-Reducible Descriptors for Multidimensional Pattern Recognition Problems. In Pattern Recognition and image Analysis (Vol. 3, pp. 258–265).
|
Agnes Borras, Francesc Tous, Josep Llados, & Maria Vanrell. (2003). High-Level Clothes Description Based on Colour-Texture and Structural Features. In 1rst. Iberian Conference on Pattern Recognition and Image Analysis IbPRIA 2003 (Vol. 2652, pp. 108–116). LNCS.
Abstract: ecture Notes in Computer Science 2652 108–116
|
David Guillamet, B. Moghaddam, & Jordi Vitria. (2003). Modeling High-Order Dependencies in Local Appearance Models. In 1rst. Iberian Conference on Pattern Recognition and Image Analysis IbPRIA 2003 (Vol. 2652, pp. 308–316). LNCS.
|
David Guillamet, & Jordi Vitria. (2003). An Experimental Evaluation of K-nn for Linear Transforms of Positive Data. In 1rst. Iberian Conference on Pattern Recognition and Image Analysis IbPRIA 2003 (Vol. 2652, pp. 317–325). LNCS.
|
David Lloret, Joan Serrat, Antonio Lopez, & Juan J. Villanueva. (2003). Ultrasound to MR Volume Registration for Brain Sinking Measurement. In 1rst. Iberian Conference on Pattern Recognition and Image Analysis IbPRIA 2003 (Vol. 2652, pp. 420–427). LNCS.
|