|   | 
Details
   web
Records
Author Sergio Escalera; Vassilis Athitsos; Isabelle Guyon
Title Challenges in Multi-modal Gesture Recognition Type Book Chapter
Year 2017 Publication Abbreviated Journal
Volume Issue Pages 1-60
Keywords Gesture recognition; Time series analysis; Multimodal data analysis; Computer vision; Pattern recognition; Wearable sensors; Infrared cameras; Kinect TMTM
Abstract This paper surveys the state of the art on multimodal gesture recognition and introduces the JMLR special topic on gesture recognition 2011–2015. We began right at the start of the Kinect TMTM revolution when inexpensive infrared cameras providing image depth recordings became available. We published papers using this technology and other more conventional methods, including regular video cameras, to record data, thus providing a good overview of uses of machine learning and computer vision using multimodal data in this area of application. Notably, we organized a series of challenges and made available several datasets we recorded for that purpose, including tens of thousands of videos, which are available to conduct further research. We also overview recent state of the art works on gesture recognition based on a proposed taxonomy for gesture recognition, discussing challenges and future lines of research.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference (up)
Notes HuPBA; no proj Approved no
Call Number Admin @ si @ EAG2017 Serial 3008
Permanent link to this record
 

 
Author Jordi Esquirol; Cristina Palmero; Vanessa Bayo; Miquel Angel Cos; Sergio Escalera; David Sanchez; Maider Sanchez; Noelia Serrano; Mireia Relats
Title Automatic RBG-depth-pressure anthropometric analysis and individualised sleep solution prescription Type Journal
Year 2017 Publication Journal of Medical Engineering & Technology Abbreviated Journal JMET
Volume 41 Issue 6 Pages 486-497
Keywords
Abstract INTRODUCTION:
Sleep surfaces must adapt to individual somatotypic features to maintain a comfortable, convenient and healthy sleep, preventing diseases and injuries. Individually determining the most adequate rest surface can often be a complex and subjective question.
OBJECTIVES:
To design and validate an automatic multimodal somatotype determination model to automatically recommend an individually designed mattress-topper-pillow combination.
METHODS:
Design and validation of an automated prescription model for an individualised sleep system is performed through a single-image 2 D-3 D analysis and body pressure distribution, to objectively determine optimal individual sleep surfaces combining five different mattress densities, three different toppers and three cervical pillows.
RESULTS:
A final study (n = 151) and re-analysis (n = 117) defined and validated the model, showing high correlations between calculated and real data (>85% in height and body circumferences, 89.9% in weight, 80.4% in body mass index and more than 70% in morphotype categorisation).
CONCLUSIONS:
Somatotype determination model can accurately prescribe an individualised sleep solution. This can be useful for healthy people and for health centres that need to adapt sleep surfaces to people with special needs. Next steps will increase model's accuracy and analise, if this prescribed individualised sleep solution can improve sleep quantity and quality; additionally, future studies will adapt the model to mattresses with technological improvements, tailor-made production and will define interfaces for people with special needs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference (up)
Notes HUPBA; no menciona Approved no
Call Number Admin @ si @ EPB2017 Serial 3010
Permanent link to this record
 

 
Author Fatemeh Noroozi; Marina Marjanovic; Angelina Njegus; Sergio Escalera; Gholamreza Anbarjafari
Title Audio-Visual Emotion Recognition in Video Clips Type Journal Article
Year 2019 Publication IEEE Transactions on Affective Computing Abbreviated Journal TAC
Volume 10 Issue 1 Pages 60-75
Keywords
Abstract This paper presents a multimodal emotion recognition system, which is based on the analysis of audio and visual cues. From the audio channel, Mel-Frequency Cepstral Coefficients, Filter Bank Energies and prosodic features are extracted. For the visual part, two strategies are considered. First, facial landmarks’ geometric relations, i.e. distances and angles, are computed. Second, we summarize each emotional video into a reduced set of key-frames, which are taught to visually discriminate between the emotions. In order to do so, a convolutional neural network is applied to key-frames summarizing videos. Finally, confidence outputs of all the classifiers from all the modalities are used to define a new feature space to be learned for final emotion label prediction, in a late fusion/stacking fashion. The experiments conducted on the SAVEE, eNTERFACE’05, and RML databases show significant performance improvements by our proposed system in comparison to current alternatives, defining the current state-of-the-art in all three databases.
Address 1 Jan.-March 2019
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference (up)
Notes HUPBA; 602.143; 602.133 Approved no
Call Number Admin @ si @ NMN2017 Serial 3011
Permanent link to this record
 

 
Author Mohammad Ali Bagheri; Qigang Gao; Sergio Escalera; Huamin Ren; Thomas B. Moeslund; Elham Etemad
Title Locality Regularized Group Sparse Coding for Action Recognition Type Journal Article
Year 2017 Publication Computer Vision and Image Understanding Abbreviated Journal CVIU
Volume 158 Issue Pages 106-114
Keywords Bag of words; Feature encoding; Locality constrained coding; Group sparse coding; Alternating direction method of multipliers; Action recognition
Abstract Bag of visual words (BoVW) models are widely utilized in image/ video representation and recognition. The cornerstone of these models is the encoding stage, in which local features are decomposed over a codebook in order to obtain a representation of features. In this paper, we propose a new encoding algorithm by jointly encoding the set of local descriptors of each sample and considering the locality structure of descriptors. The proposed method takes advantages of locality coding such as its stability and robustness to noise in descriptors, as well as the strengths of the group coding strategy by taking into account the potential relation among descriptors of a sample. To efficiently implement our proposed method, we consider the Alternating Direction Method of Multipliers (ADMM) framework, which results in quadratic complexity in the problem size. The method is employed for a challenging classification problem: action recognition by depth cameras. Experimental results demonstrate the outperformance of our methodology compared to the state-of-the-art on the considered datasets.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference (up)
Notes HuPBA; no proj Approved no
Call Number Admin @ si @ BGE2017 Serial 3014
Permanent link to this record
 

 
Author Miguel Angel Bautista; Oriol Pujol; Fernando De la Torre; Sergio Escalera
Title Error-Correcting Factorization Type Journal Article
Year 2018 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI
Volume 40 Issue Pages 2388-2401
Keywords
Abstract Error Correcting Output Codes (ECOC) is a successful technique in multi-class classification, which is a core problem in Pattern Recognition and Machine Learning. A major advantage of ECOC over other methods is that the multi- class problem is decoupled into a set of binary problems that are solved independently. However, literature defines a general error-correcting capability for ECOCs without analyzing how it distributes among classes, hindering a deeper analysis of pair-wise error-correction. To address these limitations this paper proposes an Error-Correcting Factorization (ECF) method, our contribution is three fold: (I) We propose a novel representation of the error-correction capability, called the design matrix, that enables us to build an ECOC on the basis of allocating correction to pairs of classes. (II) We derive the optimal code length of an ECOC using rank properties of the design matrix. (III) ECF is formulated as a discrete optimization problem, and a relaxed solution is found using an efficient constrained block coordinate descent approach. (IV) Enabled by the flexibility introduced with the design matrix we propose to allocate the error-correction on classes that are prone to confusion. Experimental results in several databases show that when allocating the error-correction to confusable classes ECF outperforms state-of-the-art approaches.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0162-8828 ISBN Medium
Area Expedition Conference (up)
Notes HuPBA; no menciona Approved no
Call Number Admin @ si @ BPT2018 Serial 3015
Permanent link to this record
 

 
Author Meysam Madadi
Title Human Segmentation, Pose Estimation and Applications Type Book Whole
Year 2017 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Automatic analyzing humans in photographs or videos has great potential applications in computer vision, including medical diagnosis, sports, entertainment, movie editing and surveillance, just to name a few. Body, face and hand are the most studied components of humans. Body has many variabilities in shape and clothing along with high degrees of freedom in pose. Face has many muscles causing many visible deformity, beside variable shape and hair style. Hand is a small object, moving fast and has high degrees of freedom. Adding human characteristics to all aforementioned variabilities makes human analysis quite a challenging task.
In this thesis, we developed human segmentation in different modalities. In a first scenario, we segmented human body and hand in depth images using example-based shape warping. We developed a shape descriptor based on shape context and class probabilities of shape regions to extract nearest neighbors. We then considered rigid affine alignment vs. nonrigid iterative shape warping. In a second scenario, we segmented face in RGB images using convolutional neural networks (CNN). We modeled conditional random field with recurrent neural networks. In our model pair-wise kernels are not fixed and learned during training. We trained the network end-to-end using adversarial networks which improved hair segmentation by a high margin.
We also worked on 3D hand pose estimation in depth images. In a generative approach, we fitted a finger model separately for each finger based on our example-based rigid hand segmentation. We minimized an energy function based on overlapping area, depth discrepancy and finger collisions. We also applied linear models in joint trajectory space to refine occluded joints based on visible joints error and invisible joints trajectory smoothness. In a CNN-based approach, we developed a tree-structure network to train specific features for each finger and fused them for global pose consistency. We also formulated physical and appearance constraints as loss functions.
Finally, we developed a number of applications consisting of human soft biometrics measurement and garment retexturing. We also generated some datasets in this thesis consisting of human segmentation, synthetic hand pose, garment retexturing and Italian gestures.
Address October 2017
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor Sergio Escalera;Jordi Gonzalez
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-945373-3-2 Medium
Area Expedition Conference (up)
Notes HUPBA Approved no
Call Number Admin @ si @ Mad2017 Serial 3017
Permanent link to this record
 

 
Author Onur Ferhat
Title Analysis of Head-Pose Invariant, Natural Light Gaze Estimation Methods Type Book Whole
Year 2017 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Eye tracker devices have traditionally been only used inside laboratories, requiring trained professionals and elaborate setup mechanisms. However, in the recent years the scientific work on easier–to–use eye trackers which require no special hardware—other than the omnipresent front facing cameras in computers, tablets, and mobiles—is aiming at making this technology common–place. These types of trackers have several extra challenges that make the problem harder, such as low resolution images provided by a regular webcam, the changing ambient lighting conditions, personal appearance differences, changes in head pose, and so on. Recent research in the field has focused on all these challenges in order to provide better gaze estimation performances in a real world setup.

In this work, we aim at tackling the gaze tracking problem in a single camera setup. We first analyze all the previous work in the field, identifying the strengths and weaknesses of each tried idea. We start our work on the gaze tracker with an appearance–based gaze estimation method, which is the simplest idea that creates a direct mapping between a rectangular image patch extracted around the eye in a camera image, and the gaze point (or gaze direction). Here, we do an extensive analysis of the factors that affect the performance of this tracker in several experimental setups, in order to address these problems in future works. In the second part of our work, we propose a feature–based gaze estimation method, which encodes the eye region image into a compact representation. We argue that this type of representation is better suited to dealing with head pose and lighting condition changes, as it both reduces the dimensionality of the input (i.e. eye image) and breaks the direct connection between image pixel intensities and the gaze estimation. Lastly, we use a face alignment algorithm to have robust face pose estimation, using a 3D model customized to the subject using the tracker. We combine this with a convolutional neural network trained on a large dataset of images to build a face pose invariant gaze tracker.
Address September 2017
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor Fernando Vilariño
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-945373-5-6 Medium
Area Expedition Conference (up)
Notes MV Approved no
Call Number Admin @ si @ Fer2017 Serial 3018
Permanent link to this record
 

 
Author Arash Akbarinia
Title Computational Model of Visual Perception: From Colour to Form Type Book Whole
Year 2017 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract The original idea of this project was to study the role of colour in the challenging task of object recognition. We started by extending previous research on colour naming showing that it is feasible to capture colour terms through parsimonious ellipsoids. Although, the results of our model exceeded state-of-the-art in two benchmark datasets, we realised that the two phenomena of metameric lights and colour constancy must be addressed prior to any further colour processing. Our investigation of metameric pairs reached the conclusion that they are infrequent in real world scenarios. Contrary to that, the illumination of a scene often changes dramatically. We addressed this issue by proposing a colour constancy model inspired by the dynamical centre-surround adaptation of neurons in the visual cortex. This was implemented through two overlapping asymmetric Gaussians whose variances and heights are adjusted according to the local contrast of pixels. We complemented this model with a generic contrast-variant pooling mechanism that inversely connect the percentage of pooled signal to the local contrast of a region. The results of our experiments on four benchmark datasets were indeed promising: the proposed model, although simple, outperformed even learning-based approaches in many cases. Encouraged by the success of our contrast-variant surround modulation, we extended this approach to detect boundaries of objects. We proposed an edge detection model based on the first derivative of the Gaussian kernel. We incorporated four types of surround: full, far, iso- and orthogonal-orientation. Furthermore, we accounted for the pooling mechanism at higher cortical areas and the shape feedback sent to lower areas. Our results in three benchmark datasets showed significant improvement over non-learning algorithms.
To summarise, we demonstrated that biologically-inspired models offer promising solutions to computer vision problems, such as, colour naming, colour constancy and edge detection. We believe that the greatest contribution of this Ph.D dissertation is modelling the concept of dynamic surround modulation that shows the significance of contrast-variant surround integration. The models proposed here are grounded on only a portion of what we know about the human visual system. Therefore, it is only natural to complement them accordingly in future works.
Address October 2017
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor C. Alejandro Parraga
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-945373-4-9 Medium
Area Expedition Conference (up)
Notes NEUROBIT Approved no
Call Number Admin @ si @ Akb2017 Serial 3019
Permanent link to this record
 

 
Author Cristhian Aguilera
Title Local feature description in cross-spectral imagery Type Book Whole
Year 2017 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Over the last few years, the number of consumer computer vision applications has increased dramatically. Today, computer vision solutions can be found in video game consoles, smartphone applications, driving assistance – just to name a few. Ideally, we require the performance of those applications, particularly those that are safety critical to remain constant under any external environment factors, such as changes in illumination or weather conditions. However, this is not always possible or very difficult to obtain by only using visible imagery, due to the inherent limitations of the images from that spectral band. For that reason, the use of images from different or multiple spectral bands is becoming more appealing.
The aforementioned possible advantages of using images from multiples spectral bands on various vision applications make multi-spectral image processing a relevant topic for research and development. Like in visible image processing, multi-spectral image processing needs tools and algorithms to handle information from various spectral bands. Furthermore, traditional tools such as local feature detection, which is the basis of many vision tasks such as visual odometry, image registration, or structure from motion, must be adjusted or reformulated to operate under new conditions. Traditional feature detection, description, and matching methods tend to underperform in multi-spectral settings, in comparison to mono-spectral settings, due to the natural differences between each spectral band.
The work in this thesis is focused on the local feature description problem when cross-spectral images are considered. In this context, this dissertation has three main contributions. Firstly, the work starts by proposing the usage of a combination of frequency and spatial information, in a multi-scale scheme, as feature description. Evaluations of this proposal, based on classical hand-made feature descriptors, and comparisons with state of the art cross-spectral approaches help to find and understand limitations of such strategy. Secondly, different convolutional neural network (CNN) based architectures are evaluated when used to describe cross-spectral image patches. Results showed that CNN-based methods, designed to work with visible monocular images, could be successfully applied to the description of images from two different spectral bands, with just minor modifications. In this framework, a novel CNN-based network model, specifically intended to describe image patches from two different spectral bands, is proposed. This network, referred to as Q-Net, outperforms state of the art in the cross-spectral domain, including both previous hand-made solutions as well as L2 CNN-based architectures. The third contribution of this dissertation is in the cross-spectral feature description application domain. The multispectral odometry problem is tackled showing a real application of cross-spectral descriptors
In addition to the three main contributions mentioned above, in this dissertation, two different multi-spectral datasets are generated and shared with the community to be used as benchmarks for further studies.
Address October 2017
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor Angel Sappa
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-945373-6-3 Medium
Area Expedition Conference (up)
Notes ADAS; 600.118 Approved no
Call Number Admin @ si @ Agu2017 Serial 3020
Permanent link to this record
 

 
Author I. Sorodoc; S. Pezzelle; A. Herbelot; Mariella Dimiccoli; R. Bernardi
Title Learning quantification from images: A structured neural architecture Type Journal Article
Year 2018 Publication Natural Language Engineering Abbreviated Journal NLE
Volume 24 Issue 3 Pages 363-392
Keywords
Abstract Major advances have recently been made in merging language and vision representations. Most tasks considered so far have confined themselves to the processing of objects and lexicalised relations amongst objects (content words). We know, however, that humans (even pre-school children) can abstract over raw multimodal data to perform certain types of higher level reasoning, expressed in natural language by function words. A case in point is given by their ability to learn quantifiers, i.e. expressions like few, some and all. From formal semantics and cognitive linguistics, we know that quantifiers are relations over sets which, as a simplification, we can see as proportions. For instance, in most fish are red, most encodes the proportion of fish which are red fish. In this paper, we study how well current neural network strategies model such relations. We propose a task where, given an image and a query expressed by an object–property pair, the system must return a quantifier expressing which proportions of the queried object have the queried property. Our contributions are twofold. First, we show that the best performance on this task involves coupling state-of-the-art attention mechanisms with a network architecture mirroring the logical structure assigned to quantifiers by classic linguistic formalisation. Second, we introduce a new balanced dataset of image scenarios associated with quantification queries, which we hope will foster further research in this area.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference (up)
Notes MILAB; no menciona Approved no
Call Number Admin @ si @ SPH2018 Serial 3021
Permanent link to this record
 

 
Author Maedeh Aghaei; Mariella Dimiccoli; C. Canton-Ferrer; Petia Radeva
Title Towards social pattern characterization from egocentric photo-streams Type Journal Article
Year 2018 Publication Computer Vision and Image Understanding Abbreviated Journal CVIU
Volume 171 Issue Pages 104-117
Keywords Social pattern characterization; Social signal extraction; Lifelogging; Convolutional and recurrent neural networks
Abstract Following the increasingly popular trend of social interaction analysis in egocentric vision, this article presents a comprehensive pipeline for automatic social pattern characterization of a wearable photo-camera user. The proposed framework relies merely on the visual analysis of egocentric photo-streams and consists of three major steps. The first step is to detect social interactions of the user where the impact of several social signals on the task is explored. The detected social events are inspected in the second step for categorization into different social meetings. These two steps act at event-level where each potential social event is modeled as a multi-dimensional time-series, whose dimensions correspond to a set of relevant features for each task; finally, LSTM is employed to classify the time-series. The last step of the framework is to characterize social patterns of the user. Our goal is to quantify the duration, the diversity and the frequency of the user social relations in various social situations. This goal is achieved by the discovery of recurrences of the same people across the whole set of social events related to the user. Experimental evaluation over EgoSocialStyle – the proposed dataset in this work, and EGO-GROUP demonstrates promising results on the task of social pattern characterization from egocentric photo-streams.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference (up)
Notes MILAB; no proj Approved no
Call Number Admin @ si @ ADC2018 Serial 3022
Permanent link to this record
 

 
Author Laura Igual; Santiago Segui
Title Introduction to Data Science – A Python Approach to Concepts, Techniques and Applications. Undergraduate Topics in Computer Science Type Book Whole
Year 2017 Publication Abbreviated Journal
Volume Issue Pages 1-215
Keywords
Abstract
Address
Corporate Author Thesis
Publisher 978-3-319-50016-4 Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-3-319-50016-4 Medium
Area Expedition Conference (up)
Notes MILAB Approved no
Call Number Admin @ si @ IgS2017 Serial 3027
Permanent link to this record
 

 
Author Mireia Forns-Nadal; Federico Sem; Anna Mane; Laura Igual; Dani Guinart; Oscar Vilarroya
Title Increased Nucleus Accumbens Volume in First-Episode Psychosis Type Journal Article
Year 2017 Publication Psychiatry Research-Neuroimaging Abbreviated Journal PRN
Volume 263 Issue Pages 57-60
Keywords
Abstract Nucleus accumbens has been reported as a key structure in the neurobiology of schizophrenia. Studies analyzing structural abnormalities have shown conflicting results, possibly related to confounding factors. We investigated the nucleus accumbens volume using manual delimitation in first-episode psychosis (FEP) controlling for age, cannabis use and medication. Thirty-one FEP subjects who were naive or minimally exposed to antipsychotics and a control group were MRI scanned and clinically assessed from baseline to 6 months of follow-up. FEP showed increased relative and total accumbens volumes. Clinical correlations with negative symptoms, duration of untreated psychosis and cannabis use were not significant.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference (up)
Notes MILAB; no menciona Approved no
Call Number Admin @ si @ FSM2017 Serial 3028
Permanent link to this record
 

 
Author Fernando Vilariño
Title Bringing and keeping all the stakeholders together: creating a catalog of models of governance for innovation Type Miscellaneous
Year 2017 Publication Open Living Lab Days Report Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address Krakow; August 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference (up)
Notes MV; no menciona;SIAI Approved no
Call Number Admin @ si @ Vil2017b Serial 3033
Permanent link to this record
 

 
Author Mireia Sole; Joan Blanco; Debora Gil; G. Fonseka; Richard Frodsham; Oliver Valero; Francesca Vidal; Zaida Sarrate
Title Análisis 3d de la territorialidad cromosómica en células espermatogénicas: explorando la infertilidad desde un nuevo prisma Type Journal
Year 2017 Publication Revista Asociación para el Estudio de la Biología de la Reproducción Abbreviated Journal ASEBIR
Volume 22 Issue 2 Pages 105
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference (up)
Notes IAM; 600.096; 600.145 Approved no
Call Number Admin @ si @ SBG2017d Serial 3042
Permanent link to this record