David Augusto Rojas, Joost Van de Weijer, & Theo Gevers. (2010). Color Edge Saliency Boosting using Natural Image Statistics. In 5th European Conference on Colour in Graphics, Imaging and Vision and 12th International Symposium on Multispectral Colour Science (228–234).
Abstract: State of the art methods for image matching, content-based retrieval and recognition use local features. Most of these still exploit only the luminance information for detection. The color saliency boosting algorithm has provided an efficient method to exploit the saliency of color edges based on information theory. However, during the design of this algorithm, some issues were not addressed in depth: (1) The method has ignored the underlying distribution of derivatives in natural images. (2) The dependence of information content in color-boosted edges on its spatial derivatives has not been quantitatively established. (3) To evaluate luminance and color contributions to saliency of edges, a parameter gradually balancing both contributions is required.
We introduce a novel algorithm, based on the principles of independent component analysis, which models the first order derivatives of color natural images by a generalized Gaussian distribution. Furthermore, using this probability model we show that for images with a Laplacian distribution, which is a particular case of generalized Gaussian distribution, the magnitudes of color-boosted edges reflect their corresponding information content. In order to evaluate the impact of color edge saliency in real world applications, we introduce an extension of the Laplacian-of-Gaussian detector to color, and the performance for image matching is evaluated. Our experiments show that our approach provides more discriminative regions in comparison with the original detector.
|
|
Partha Pratim Roy, Eduard Vazquez, Josep Llados, Ramon Baldrich, & Umapada Pal. (2008). A System to Segment Text and Symbols from Color Maps. In Graphics Recognition. Recent Advances and New Opportunities (Vol. 5046, pp. 245–256). LNCS.
|
|
Partha Pratim Roy, Eduard Vazquez, Josep Llados, Ramon Baldrich, & Umapada Pal. (2007). A System to Retrieve Text/Symbols from Color Maps using Connected Component and Skeleton Analysis. In J.M. Ogier W. L. J. Llados (Ed.), Seventh IAPR International Workshop on Graphics Recognition (79–78).
|
|
David Augusto Rojas, Fahad Shahbaz Khan, & Joost Van de Weijer. (2010). The Impact of Color on Bag-of-Words based Object Recognition. In 20th International Conference on Pattern Recognition (1549–1553).
Abstract: In recent years several works have aimed at exploiting color information in order to improve the bag-of-words based image representation. There are two stages in which color information can be applied in the bag-of-words framework. Firstly, feature detection can be improved by choosing highly informative color-based regions. Secondly, feature description, typically focusing on shape, can be improved with a color description of the local patches. Although both approaches have been shown to improve results the combined merits have not yet been analyzed. Therefore, in this paper we investigate the combined contribution of color to both the feature detection and extraction stages. Experiments performed on two challenging data sets, namely Flower and Pascal VOC 2009; clearly demonstrate that incorporating color in both feature detection and extraction significantly improves the overall performance.
|
|
A. Richichi, O. Fors, M.T. Merino, Xavier Otazu, J. Nuñez, A. Prades, et al. (2006). The Calar Alto lunar occultation program: update and new results. Astronomy and Astrophysics (Section ’Stellar structure and evolution’), 445:1081–1088.
|
|
C. Alejandro Parraga, Javier Vazquez, & Maria Vanrell. (2009). A new cone activation-based natural images dataset. PER - Perception, 36, 180.
Abstract: We generated a new dataset of digital natural images where each colour plane corresponds to the human LMS (long-, medium-, short-wavelength) cone activations. The images were chosen to represent five different visual environments (eg forest, seaside, mountain snow, urban, motorways) and were taken under natural illumination at different times of day. At the bottom-left corner of each picture there was a matte grey ball of approximately constant spectral reflectance (across the camera's response spectrum,) and nearly Lambertian reflective properties, which allows to compute (and remove, if necessary) the illuminant's colour and intensity. The camera (Sigma Foveon SD10) was calibrated by measuring its sensor's spectral responses using a set of 31 spectrally narrowband interference filters. This allowed conversion of the final camera-dependent RGB colour space into the Smith and Pokorny (1975) cone activation space by means of a polynomial transformation, optimised for a set of 1269 Munsell chip reflectances. This new method is an improvement over the usual 3 × 3 matrix transformation which is only accurate for spectrally-narrowband colours. The camera-to-LMS transformation can be recalculated to consider other non-human visual systems. The dataset is available to download from our website.
|
|
Olivier Penacchio, C. Alejandro Parraga, & Maria Vanrell. (2010). Natural Scene Statistics account for Human Cones Ratios. PER - Perception. ECVP Abstract Supplement, 39, 101.
Abstract: In two previous experiments [Parraga et al, 2009 J. of Im. Sci. and Tech 53(3) 031106; Benavente et al,2009 Perception 38 ECVP Supplement, 36] the boundaries of basic colour categories were measured.
In the first experiment, samples were presented in isolation (ie on a dark background) and boundaries were measured using a yes/no paradigm. In the second, subjects adjusted the chromaticity of a sample presented on a random Mondrian background to find the boundary between pairs of adjacent colours.
Results from these experiments showed significant dierences but it was not possible to conclude whether this discrepancy was due to the absence/presence of a colourful background or to the dierences in the paradigms used. In this work, we settle this question by repeating the first experiment (ie samples presented on a dark background) using the second paradigm. A comparison of results shows that
although boundary locations are very similar, boundaries measured in context are significantly dierent(more diuse) than those measured in isolation (confirmed by a Student’s t-test analysis on the subject’s answers statistical distributions). In addition, we completed the mapping of colour name space by measuring the boundaries between chromatic colours and the achromatic centre. With these results we completed our parametric fuzzy-sets model of colour naming space.
|
|
C. Alejandro Parraga, Robert Benavente, & Maria Vanrell. (2010). Towards a general model of colour categorization which considers context. PER - Perception. ECVP Abstract Supplement, 39, 86.
Abstract: In two previous experiments [Parraga et al, 2009 J. of Im. Sci. and Tech 53(3) 031106; Benavente et al,2009 Perception 38 ECVP Supplement, 36] the boundaries of basic colour categories were measured.
In the first experiment, samples were presented in isolation (ie on a dark background) and boundaries were measured using a yes/no paradigm. In the second, subjects adjusted the chromaticity of a sample presented on a random Mondrian background to find the boundary between pairs of adjacent colours.
Results from these experiments showed significant dierences but it was not possible to conclude whether this discrepancy was due to the absence/presence of a colourful background or to the dierences in the paradigms used. In this work, we settle this question by repeating the first experiment (ie samples presented on a dark background) using the second paradigm. A comparison of results shows that
although boundary locations are very similar, boundaries measured in context are significantly dierent(more diuse) than those measured in isolation (confirmed by a Student’s t-test analysis on the subject’s answers statistical distributions). In addition, we completed the mapping of colour name space by measuring the boundaries between chromatic colours and the achromatic centre. With these results we
completed our parametric fuzzy-sets model of colour naming space.
|
|
C. Alejandro Parraga, Ramon Baldrich, & Maria Vanrell. (2010). Accurate Mapping of Natural Scenes Radiance to Cone Activation Space: A New Image Dataset. In 5th European Conference on Colour in Graphics, Imaging and Vision and 12th International Symposium on Multispectral Colour Science (50–57).
Abstract: The characterization of trichromatic cameras is usually done in terms of a device-independent color space, such as the CIE 1931 XYZ space. This is indeed convenient since it allows the testing of results against colorimetric measures. We have characterized our camera to represent human cone activation by mapping the camera sensor's (RGB) responses to human (LMS) through a polynomial transformation, which can be “customized” according to the types of scenes we want to represent. Here we present a method to test the accuracy of the camera measures and a study on how the choice of training reflectances for the polynomial may alter the results.
|
|
C. Alejandro Parraga, Robert Benavente, Maria Vanrell, & Ramon Baldrich. (2009). Psychophysical measurements to model inter-colour regions of colour-naming space. Journal of Imaging Science and Technology, 53(3), 031106 (8 pages).
Abstract: JCR Impact Factor 2009: 0.391
In this paper, we present a fuzzy-set of parametric functions which segment the CIE lab space into eleven regions which correspond to the group of common universal categories present in all evolved languages as identified by anthropologists and linguists. The set of functions is intended to model a color-name assignment task by humans and differs from other models in its emphasis on the inter-color boundary regions, which were explicitly measured by means of a psychophysics experiment. In our particular implementation, the CIE lab space was segmented into eleven color categories using a Triple Sigmoid as the fuzzy sets basis, whose parameters are included in this paper. The model’s parameters were adjusted according to the psychophysical results of a yes/no discrimination paradigm where observers had to choose (English) names for isoluminant colors belonging to regions in-between neighboring categories. These colors were presented on a calibrated CRT monitor (14-bit x 3 precision). The experimental results show that inter- color boundary regions are much less defined than expected and color samples other than those near the most representatives are needed to define the position and shape of boundaries between categories. The extended set of model parameters is given as a table.
Keywords: image processing; Analysis
|
|
C. Alejandro Parraga, Robert Benavente, Maria Vanrell, & Ramon Baldrich. (2008). Modelling Inter-Colour Regions of Colour Naming Space. In 4th European Conference on Colour in Graphics, Imaging and Vision Proceedings (218–222).
|
|
C. Alejandro Parraga, Robert Benavente, & Maria Vanrell. (2007). Modeling Colour-Naming Space with Fuzzy Sets. Perception 36:198–198, supp.
|
|
Xavier Otazu, Maria Vanrell, & C. Alejandro Parraga. (2008). Colour induction effects are modelled by a low-level multiresolution wavelet framework. Perception 37(Suppl.): 107.
|
|
Xavier Otazu, Maria Vanrell, & C. Alejandro Parraga. (2008). Multiresolution Wavelet Framework Models Brightness Induction Effects. VR - Vision Research, 733–751.
|
|
Xavier Otazu, Maria Vanrell, & C. Alejandro Parraga. (2007). Mutiresolution Wavelet Framework Reproduces Induction Effects. Perception 36:167–167, supp.
|
|
Xavier Otazu, & Maria Vanrell. (2006). Several lightness induction effects with a computational multiresolution wavelet framework. 29th European Conference on Visual Perception (ECVP’06), Perception Suppl s, 32: 56–56.
|
|
Xavier Otazu, & Maria Vanrell. (2005). Perceptual representation of textured images. Journal of Imaging Science and Technology, 49(3):262–271 (IF: 0.522).
|
|
Xavier Otazu, & Maria Vanrell. (2005). A surround-induction function to unify assimilation and contrast in a computational model of color apearance.
|
|