Carola Figueroa Flores, Abel Gonzalez-Garcia, Joost Van de Weijer, & Bogdan Raducanu. (2019). Saliency for fine-grained object recognition in domains with scarce training data. PR - Pattern Recognition, 94, 62–73.
Abstract: This paper investigates the role of saliency to improve the classification accuracy of a Convolutional Neural Network (CNN) for the case when scarce training data is available. Our approach consists in adding a saliency branch to an existing CNN architecture which is used to modulate the standard bottom-up visual features from the original image input, acting as an attentional mechanism that guides the feature extraction process. The main aim of the proposed approach is to enable the effective training of a fine-grained recognition model with limited training samples and to improve the performance on the task, thereby alleviating the need to annotate a large dataset. The vast majority of saliency methods are evaluated on their ability to generate saliency maps, and not on their functionality in a complete vision pipeline. Our proposed pipeline allows to evaluate saliency methods for the high-level task of object recognition. We perform extensive experiments on various fine-grained datasets (Flowers, Birds, Cars, and Dogs) under different conditions and show that saliency can considerably improve the network’s performance, especially for the case of scarce training data. Furthermore, our experiments show that saliency methods that obtain improved saliency maps (as measured by traditional saliency benchmarks) also translate to saliency methods that yield improved performance gains when applied in an object recognition pipeline.
|
|
Alicia Fornes, Xavier Otazu, & Josep Llados. (2013). Show through cancellation and image enhancement by multiresolution contrast processing. In 12th International Conference on Document Analysis and Recognition (pp. 200–204).
Abstract: Historical documents suffer from different types of degradation and noise such as background variation, uneven illumination or dark spots. In case of double-sided documents, another common problem is that the back side of the document usually interferes with the front side because of the transparency of the document or ink bleeding. This effect is called the show through phenomenon. Many methods are developed to solve these problems, and in the case of show-through, by scanning and matching both the front and back sides of the document. In contrast, our approach is designed to use only one side of the scanned document. We hypothesize that show-trough are low contrast components, while foreground components are high contrast ones. A Multiresolution Contrast (MC) decomposition is presented in order to estimate the contrast of features at different spatial scales. We cancel the show-through phenomenon by thresholding these low contrast components. This decomposition is also able to enhance the image removing shadowed areas by weighting spatial scales. Results show that the enhanced images improve the readability of the documents, allowing scholars both to recover unreadable words and to solve ambiguities.
|
|
Carola Figueroa Flores, Bogdan Raducanu, David Berga, & Joost Van de Weijer. (2021). Hallucinating Saliency Maps for Fine-Grained Image Classification for Limited Data Domains. In 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (Vol. 4, pp. 163–171).
Abstract: arXiv:2007.12562
Most of the saliency methods are evaluated on their ability to generate saliency maps, and not on their functionality in a complete vision pipeline, like for instance, image classification. In the current paper, we propose an approach which does not require explicit saliency maps to improve image classification, but they are learned implicitely, during the training of an end-to-end image classification task. We show that our approach obtains similar results as the case when the saliency maps are provided explicitely. Combining RGB data with saliency maps represents a significant advantage for object recognition, especially for the case when training data is limited. We validate our method on several datasets for fine-grained classification tasks (Flowers, Birds and Cars). In addition, we show that our saliency estimation method, which is trained without any saliency groundtruth data, obtains competitive results on real image saliency benchmark (Toronto), and outperforms deep saliency models with synthetic images (SID4VAM).
|
|
Graham D. Finlayson, Javier Vazquez, Sabine Süsstrunk, & Maria Vanrell. (2012). Spectral sharpening by spherical sampling. JOSA A - Journal of the Optical Society of America A, 29(7), 1199–1210.
Abstract: There are many works in color that assume illumination change can be modeled by multiplying sensor responses by individual scaling factors. The early research in this area is sometimes grouped under the heading “von Kries adaptation”: the scaling factors are applied to the cone responses. In more recent studies, both in psychophysics and in computational analysis, it has been proposed that scaling factors should be applied to linear combinations of the cones that have narrower support: they should be applied to the so-called “sharp sensors.” In this paper, we generalize the computational approach to spectral sharpening in three important ways. First, we introduce spherical sampling as a tool that allows us to enumerate in a principled way all linear combinations of the cones. This allows us to, second, find the optimal sharp sensors that minimize a variety of error measures including CIE Delta E (previous work on spectral sharpening minimized RMS) and color ratio stability. Lastly, we extend the spherical sampling paradigm to the multispectral case. Here the objective is to model the interaction of light and surface in terms of color signal spectra. Spherical sampling is shown to improve on the state of the art.
|
|
ChuanMing Fang, Kai Wang, & Joost Van de Weijer. (2023). IterInv: Iterative Inversion for Pixel-Level T2I Models. In 37th Annual Conference on Neural Information Processing Systems.
Abstract: Large-scale text-to-image diffusion models have been a ground-breaking development in generating convincing images following an input text prompt. The goal of image editing research is to give users control over the generated images by modifying the text prompt. Current image editing techniques are relying on DDIM inversion as a common practice based on the Latent Diffusion Models (LDM). However, the large pretrained T2I models working on the latent space as LDM suffer from losing details due to the first compression stage with an autoencoder mechanism. Instead, another mainstream T2I pipeline working on the pixel level, such as Imagen and DeepFloyd-IF, avoids this problem. They are commonly composed of several stages, normally with a text-to-image stage followed by several super-resolution stages. In this case, the DDIM inversion is unable to find the initial noise to generate the original image given that the super-resolution diffusion models are not compatible with the DDIM technique. According to our experimental findings, iteratively concatenating the noisy image as the condition is the root of this problem. Based on this observation, we develop an iterative inversion (IterInv) technique for this stream of T2I models and verify IterInv with the open-source DeepFloyd-IF model. By combining our method IterInv with a popular image editing method, we prove the application prospects of IterInv. The code will be released at \url{this https URL}.
|
|
Adrian Galdran, Aitor Alvarez-Gila, Alessandro Bria, Javier Vazquez, & Marcelo Bertalmio. (2018). On the Duality Between Retinex and Image Dehazing. In 31st IEEE Conference on Computer Vision and Pattern Recognition (8212–8221).
Abstract: Image dehazing deals with the removal of undesired loss of visibility in outdoor images due to the presence of fog. Retinex is a color vision model mimicking the ability of the Human Visual System to robustly discount varying illuminations when observing a scene under different spectral lighting conditions. Retinex has been widely explored in the computer vision literature for image enhancement and other related tasks. While these two problems are apparently unrelated, the goal of this work is to show that they can be connected by a simple linear relationship. Specifically, most Retinex-based algorithms have the characteristic feature of always increasing image brightness, which turns them into ideal candidates for effective image dehazing by directly applying Retinex to a hazy image whose intensities have been inverted. In this paper, we give theoretical proof that Retinex on inverted intensities is a solution to the image dehazing problem. Comprehensive qualitative and quantitative results indicate that several classical and modern implementations of Retinex can be transformed into competing image dehazing algorithms performing on pair with more complex fog removal methods, and can overcome some of the main challenges associated with this problem.
Keywords: Image color analysis; Task analysis; Atmospheric modeling; Computer vision; Computational modeling; Lighting
|
|
Bojana Gajic, Ariel Amato, Ramon Baldrich, & Carlo Gatta. (2019). Bag of Negatives for Siamese Architectures. In 30th British Machine Vision Conference.
Abstract: Training a Siamese architecture for re-identification with a large number of identities is a challenging task due to the difficulty of finding relevant negative samples efficiently. In this work we present Bag of Negatives (BoN), a method for accelerated and improved training of Siamese networks that scales well on datasets with a very large number of identities. BoN is an efficient and loss-independent method, able to select a bag of high quality negatives, based on a novel online hashing strategy.
|
|
Bojana Gajic, Ariel Amato, Ramon Baldrich, Joost Van de Weijer, & Carlo Gatta. (2022). Area Under the ROC Curve Maximization for Metric Learning. In CVPR 2022 Workshop on Efficien Deep Learning for Computer Vision (ECV 2022, 5th Edition).
Abstract: Most popular metric learning losses have no direct relation with the evaluation metrics that are subsequently applied to evaluate their performance. We hypothesize that training a metric learning model by maximizing the area under the ROC curve (which is a typical performance measure of recognition systems) can induce an implicit ranking suitable for retrieval problems. This hypothesis is supported by previous work that proved that a curve dominates in ROC space if and only if it dominates in Precision-Recall space. To test this hypothesis, we design and maximize an approximated, derivable relaxation of the area under the ROC curve. The proposed AUC loss achieves state-of-the-art results on two large scale retrieval benchmark datasets (Stanford Online Products and DeepFashion In-Shop). Moreover, the AUC loss achieves comparable performance to more complex, domain specific, state-of-the-art methods for vehicle re-identification.
Keywords: Training; Computer vision; Conferences; Area measurement; Benchmark testing; Pattern recognition
|
|
Abel Gonzalez-Garcia, Robert Benavente, Olivier Penacchio, Javier Vazquez, Maria Vanrell, & C. Alejandro Parraga. (2013). Coloresia: An Interactive Colour Perception Device for the Visually Impaired. In Multimodal Interaction in Image and Video Applications (Vol. 48, pp. 47–66). Springer Berlin Heidelberg.
Abstract: A significative percentage of the human population suffer from impairments in their capacity to distinguish or even see colours. For them, everyday tasks like navigating through a train or metro network map becomes demanding. We present a novel technique for extracting colour information from everyday natural stimuli and presenting it to visually impaired users as pleasant, non-invasive sound. This technique was implemented inside a Personal Digital Assistant (PDA) portable device. In this implementation, colour information is extracted from the input image and categorised according to how human observers segment the colour space. This information is subsequently converted into sound and sent to the user via speakers or headphones. In the original implementation, it is possible for the user to send its feedback to reconfigure the system, however several features such as these were not implemented because the current technology is limited.We are confident that the full implementation will be possible in the near future as PDA technology improves.
|
|
Justine Giroux, Mohammad Reza Karimi Dastjerdi, Yannick Hold-Geoffroy, Javier Vazquez, & Jean François Lalonde. (2024). Towards a Perceptual Evaluation Framework for Lighting Estimation. In Arxiv.
Abstract: rogress in lighting estimation is tracked by computing existing image quality assessment (IQA) metrics on images from standard datasets. While this may appear to be a reasonable approach, we demonstrate that doing so does not correlate to human preference when the estimated lighting is used to relight a virtual scene into a real photograph. To study this, we design a controlled psychophysical experiment where human observers must choose their preference amongst rendered scenes lit using a set of lighting estimation algorithms selected from the recent literature, and use it to analyse how these algorithms perform according to human perception. Then, we demonstrate that none of the most popular IQA metrics from the literature, taken individually, correctly represent human perception. Finally, we show that by learning a combination of existing IQA metrics, we can more accurately represent human preference. This provides a new perceptual framework to help evaluate future lighting estimation algorithms.
|
|
Theo Gevers, Arjan Gijsenij, Joost Van de Weijer, & J.M. Geusebroek. (2012). Color in Computer Vision: Fundamentals and Applications. The Wiley-IS&T Series in Imaging Science and Technology.
|
|
Arjan Gijsenij, Theo Gevers, & Joost Van de Weijer. (2011). Computational Color Constancy: Survey and Experiments. TIP - IEEE Transactions on Image Processing, 20(9), 2475–2489.
Abstract: Computational color constancy is a fundamental prerequisite for many computer vision applications. This paper presents a survey of many recent developments and state-of-the- art methods. Several criteria are proposed that are used to assess the approaches. A taxonomy of existing algorithms is proposed and methods are separated in three groups: static methods, gamut-based methods and learning-based methods. Further, the experimental setup is discussed including an overview of publicly available data sets. Finally, various freely available methods, of which some are considered to be state-of-the-art, are evaluated on two data sets.
Keywords: computational color constancy;computer vision application;gamut-based method;learning-based method;static method;colour vision;computer vision;image colour analysis;learning (artificial intelligence);lighting
|
|
Arjan Gijsenij, Theo Gevers, & Joost Van de Weijer. (2012). Improving Color Constancy by Photometric Edge Weighting. TPAMI - IEEE Transaction on Pattern Analysis and Machine Intelligence, 34(5), 918–929.
Abstract: : Edge-based color constancy methods make use of image derivatives to estimate the illuminant. However, different edge types exist in real-world images such as material, shadow and highlight edges. These different edge types may have a distinctive influence on the performance of the illuminant estimation. Therefore, in this paper, an extensive analysis is provided of different edge types on the performance of edge-based color constancy methods. First, an edge-based taxonomy is presented classifying edge types based on their photometric properties (e.g. material, shadow-geometry and highlights). Then, a performance evaluation of edge-based color constancy is provided using these different edge types. From this performance evaluation it is derived that specular and shadow edge types are more valuable than material edges for the estimation of the illuminant. To this end, the (iterative) weighted Grey-Edge algorithm is proposed in which these edge types are more emphasized for the estimation of the illuminant. Images that are recorded under controlled circumstances demonstrate that the proposed iterative weighted Grey-Edge algorithm based on highlights reduces the median angular error with approximately $25\%$. In an uncontrolled environment, improvements in angular error up to $11\%$ are obtained with respect to regular edge-based color constancy.
|
|
Dipam Goswami, Yuyang Liu, Bartlomiej Twardowski, & Joost Van de Weijer. (2023). FeCAM: Exploiting the Heterogeneity of Class Distributions in Exemplar-Free Continual Learning. In 37th Annual Conference on Neural Information Processing Systems.
|
|
Alex Gomez-Villa, Adrian Martin, Javier Vazquez, Marcelo Bertalmio, & Jesus Malo. (2022). On the synthesis of visual illusions using deep generative models. JOV - Journal of Vision, 22(8)(2), 1–18.
Abstract: Visual illusions expand our understanding of the visual system by imposing constraints in the models in two different ways: i) visual illusions for humans should induce equivalent illusions in the model, and ii) illusions synthesized from the model should be compelling for human viewers too. These constraints are alternative strategies to find good vision models. Following the first research strategy, recent studies have shown that artificial neural network architectures also have human-like illusory percepts when stimulated with classical hand-crafted stimuli designed to fool humans. In this work we focus on the second (less explored) strategy: we propose a framework to synthesize new visual illusions using the optimization abilities of current automatic differentiation techniques. The proposed framework can be used with classical vision models as well as with more recent artificial neural network architectures. This framework, validated by psychophysical experiments, can be used to study the difference between a vision model and the actual human perception and to optimize the vision model to decrease this difference.
|
|
Albert Gordo. (2009). A Cyclic Page Layout Descriptor for Document Classification & Retrieval (Vol. 128). Master's thesis, , Bellaterra, Barcelona.
|
|
Carlo Gatta, Adriana Romero, & Joost Van de Weijer. (2014). Unrolling loopy top-down semantic feedback in convolutional deep networks. In Workshop on Deep Vision: Deep Learning for Computer Vision (pp. 498–505).
Abstract: In this paper, we propose a novel way to perform top-down semantic feedback in convolutional deep networks for efficient and accurate image parsing. We also show how to add global appearance/semantic features, which have shown to improve image parsing performance in state-of-the-art methods, and was not present in previous convolutional approaches. The proposed method is characterised by an efficient training and a sufficiently fast testing. We use the well known SIFTflow dataset to numerically show the advantages provided by our contributions, and to compare with state-of-the-art image parsing convolutional based approaches.
|
|
David Geronimo, Joan Serrat, Antonio Lopez, & Ramon Baldrich. (2013). Traffic sign recognition for computer vision project-based learning. T-EDUC - IEEE Transactions on Education, 56(3), 364–371.
Abstract: This paper presents a graduate course project on computer vision. The aim of the project is to detect and recognize traffic signs in video sequences recorded by an on-board vehicle camera. This is a demanding problem, given that traffic sign recognition is one of the most challenging problems for driving assistance systems. Equally, it is motivating for the students given that it is a real-life problem. Furthermore, it gives them the opportunity to appreciate the difficulty of real-world vision problems and to assess the extent to which this problem can be solved by modern computer vision and pattern classification techniques taught in the classroom. The learning objectives of the course are introduced, as are the constraints imposed on its design, such as the diversity of students' background and the amount of time they and their instructors dedicate to the course. The paper also describes the course contents, schedule, and how the project-based learning approach is applied. The outcomes of the course are discussed, including both the students' marks and their personal feedback.
Keywords: traffic signs
|
|