toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Josep M. Gonfaus edit  openurl
  Title Towards Deep Image Understanding: From pixels to semantics Type Book Whole
  Year 2012 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Understanding the content of the images is one of the greatest challenges of computer vision. Recognition of objects appearing in images, identifying and interpreting their actions are the main purposes of Image Understanding. This thesis seeks to identify what is present in a picture by categorizing and locating all the objects in the scene.
Images are composed by pixels, and one possibility consists of assigning to each pixel an object category, which is commonly known as semantic segmentation. By incorporating information as a contextual cue, we are able to resolve the ambiguity within categories at the pixel-level. We propose three levels of scale in order to resolve such ambiguity.
Another possibility to represent the objects is the object detection task. In this case, the aim is to recognize and localize the whole object by accurately placing a bounding box around it. We present two new approaches. The first one is focused on improving the object representation of deformable part models with the concept of factorized appearances. The second approach addresses the issue of reducing the computational cost for multi-class recognition. The results given have been validated on several commonly used datasets, reaching international recognition and state-of-the-art within the field
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Jordi Gonzalez;Theo Gevers  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE Approved no  
  Call Number (up) Admin @ si @ Gon2012 Serial 2208  
Permanent link to this record
 

 
Author Wenjuan Gong edit  openurl
  Title 3D Motion Data aided Human Action Recognition and Pose Estimation Type Book Whole
  Year 2013 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract In this work, we explore human action recognition and pose estimation prob-
lems. Different from traditional works of learning from 2D images or video
sequences and their annotated output, we seek to solve the problems with ad-
ditional 3D motion capture information, which helps to fill the gap between 2D
image features and human interpretations.
We first compare two different schools of approaches commonly used for 3D
pose estimation from 2D pose configuration: modeling and learning methods.
By looking into experiments results and considering our problems, we fixed a
learning method as the following approaches to do pose estimation. We then
establish a framework by adding a module of detecting 2D pose configuration
from images with varied background, which widely extend the application of
the approach. We also seek to directly estimate 3D poses from image features,
instead of estimating 2D poses as a intermediate module. We explore a robust
input feature, which combined with the proposed distance measure, provides
a solution for noisy or corrupted inputs. We further utilize the above method
to estimate weak poses,which is a concise representation of the original poses
by using dimension deduction technologies, from image features. Weak pose
space is where we calculate vocabulary and label action types using a bog of
words pipeline. Temporal information of an action is taken into consideration by
considering several consecutive frames as a single unit for computing vocabulary
and histogram assignments.
 
  Address Barcelona  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Jordi Gonzalez;Xavier Roca  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE Approved no  
  Call Number (up) Admin @ si @ Gon2013 Serial 2279  
Permanent link to this record
 

 
Author Alejandro Gonzalez Alzate edit  isbn
openurl 
  Title Multi-modal Pedestrian Detection Type Book Whole
  Year 2015 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Pedestrian detection continues to be an extremely challenging problem in real scenarios, in which situations like illumination changes, noisy images, unexpected objects, uncontrolled scenarios and variant appearance of objects occur constantly. All these problems force the development of more robust detectors for relevant applications like vision-based autonomous vehicles, intelligent surveillance, and pedestrian tracking for behavior analysis. Most reliable vision-based pedestrian detectors base their decision on features extracted using a single sensor capturing complementary features, e.g., appearance, and texture. These features usually are extracted from the current frame, ignoring temporal information, or including it in a post process step e.g., tracking or temporal coherence. Taking into account these issues we formulate the following question: can we generate more robust pedestrian detectors by introducing new information sources in the feature extraction step?
In order to answer this question we develop different approaches for introducing new information sources to well-known pedestrian detectors. We start by the inclusion of temporal information following the Stacked Sequential Learning (SSL) paradigm which suggests that information extracted from the neighboring samples in a sequence can improve the accuracy of a base classifier.
We then focus on the inclusion of complementary information from different sensors like 3D point clouds (LIDAR – depth), far infrared images (FIR), or disparity maps (stereo pair cameras). For this end we develop a multi-modal framework in which information from different sensors is used for increasing detection accuracy (by increasing information redundancy). Finally we propose a multi-view pedestrian detector, this multi-view approach splits the detection problem in n sub-problems.
Each sub-problem will detect objects in a given specific view reducing in that way the variability problem faced when a single detectors is used for the whole problem. We show that these approaches obtain competitive results with other state-of-the-art methods but instead of design new features, we reuse existing ones boosting their performance.
 
  Address November 2015  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor David Vazquez;Antonio Lopez;  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-943427-7-6 Medium  
  Area Expedition Conference  
  Notes ADAS; 600.076 Approved no  
  Call Number (up) Admin @ si @ Gon2015 Serial 2706  
Permanent link to this record
 

 
Author Albert Gordo edit  openurl
  Title Document Image Representation, Classification and Retrieval in Large-Scale Domains Type Book Whole
  Year 2013 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Despite the “paperless office” ideal that started in the decade of the seventies, businesses still strive against an increasing amount of paper documentation. Companies still receive huge amounts of paper documentation that need to be analyzed and processed, mostly in a manual way. A solution for this task consists in, first, automatically scanning the incoming documents. Then, document images can be analyzed and information can be extracted from the data. Documents can also be automatically dispatched to the appropriate workflows, used to retrieve similar documents in the dataset to transfer information, etc.

Due to the nature of this “digital mailroom”, we need document representation methods to be general, i.e., able to cope with very different types of documents. We need the methods to be sound, i.e., able to cope with unexpected types of documents, noise, etc. And, we need to methods to be scalable, i.e., able to cope with thousands or millions of documents that need to be processed, stored, and consulted. Unfortunately, current techniques of document representation, classification and retrieval are not apt for this digital mailroom framework, since they do not fulfill some or all of these requirements.

Through this thesis we focus on the problem of document representation aimed at classification and retrieval tasks under this digital mailroom framework. We first propose a novel document representation based on runlength histograms, and extend it to cope with more complex documents such as multiple-page documents, or documents that contain more sources of information such as extracted OCR text. Then we focus on the scalability requirements and propose a novel binarization method which we dubbed PCAE, as well as two general asymmetric distances between binary embeddings that can significantly improve the retrieval results at a minimal extra computational cost. Finally, we note the importance of supervised learning when performing large-scale retrieval, and study several approaches that can significantly boost the results at no extra cost at query time.
 
  Address Barcelona  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Ernest Valveny;Florent Perronnin  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number (up) Admin @ si @ Gor2013 Serial 2277  
Permanent link to this record
 

 
Author David Guillamet edit  openurl
  Title Statistical Local Appearance Models for Object Recognition Type Book Whole
  Year 2004 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address Bellaterra  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Place of Publication Editor Jordi Vitria  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) Admin @ si @ Gui2004 Serial 444  
Permanent link to this record
 

 
Author Akhil Gurram edit  isbn
openurl 
  Title Monocular Depth Estimation for Autonomous Driving Type Book Whole
  Year 2022 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract 3D geometric information is essential for on-board perception in autonomous driving and driver assistance. Autonomous vehicles (AVs) are equipped with calibrated sensor suites. As part of these suites, we can find LiDARs, which are expensive active sensors in charge of providing the 3D geometric information. Depending on the operational conditions for the AV, calibrated stereo rigs may be also sufficient for obtaining 3D geometric information, being these rigs less expensive and easier to install than LiDARs. However, ensuring a proper maintenance and calibration of these types of sensors is not trivial. Accordingly, there is an increasing interest on performing monocular depth estimation (MDE) to obtain 3D geometric information on-board. MDE is very appealing since it allows for appearance and depth being on direct pixelwise correspondence without further calibration. Moreover, a set of single cameras with MDE capabilities would still be a cheap solution for on-board perception, relatively easy to integrate and maintain in an AV.
Best MDE models are based on Convolutional Neural Networks (CNNs) trained in a supervised manner, i.e., assuming pixelwise ground truth (GT). Accordingly, the overall goal of this PhD is to study methods for improving CNN-based MDE accuracy under different training settings. More specifically, this PhD addresses different research questions that are described below. When we started to work in this PhD, state-of-theart methods for MDE were already based on CNNs. In fact, a promising line of work consisted in using image-based semantic supervision (i.e., pixel-level class labels) while training CNNs for MDE using LiDAR-based supervision (i.e., depth). It was common practice to assume that the same raw training data are complemented by both types of supervision, i.e., with depth and semantic labels. However, in practice, it was more common to find heterogeneous datasets with either only depth supervision or only semantic supervision. Therefore, our first work was to research if we could train CNNs for MDE by leveraging depth and semantic information from heterogeneous datasets. We show that this is indeed possible, and we surpassed the state-of-the-art results on MDE at the time we did this research. To achieve our results, we proposed a particular CNN architecture and a new training protocol.
After this research, it was clear that the upper-bound setting to train CNN-based MDE models consists in using LiDAR data as supervision. However, it would be cheaper and more scalable if we would be able to train such models from monocular sequences. Obviously, this is far more challenging, but worth to research. Training MDE models using monocular sequences is possible by relying on structure-from-motion (SfM) principles to generate self-supervision. Nevertheless, problems of camouflaged objects, visibility changes, static-camera intervals, textureless areas, and scale ambiguity, diminish the usefulness of such self-supervision. To alleviate these problems, we perform MDE by virtual-world supervision and real-world SfM self-supervision. We call our proposalMonoDEVSNet. We compensate the SfM self-supervision limitations by leveraging
virtual-world images with accurate semantic and depth supervision, as well as addressing the virtual-to-real domain gap. MonoDEVSNet outperformed previous MDE CNNs trained on monocular and even stereo sequences. We have publicly released MonoDEVSNet at <https://github.com/HMRC-AEL/MonoDEVSNet>.
Finally, since MDE is performed to produce 3D information for being used in downstream tasks related to on-board perception. We also address the question of whether the standard metrics for MDE assessment are a good indicator for future MDE-based driving-related perception tasks. By using 3D object detection on point clouds as proxy of on-board perception, we conclude that, indeed, MDE evaluation metrics give rise to a ranking of methods which reflects relatively well the 3D object detection results we may expect.
 
  Address March, 2022  
  Corporate Author Thesis Ph.D. thesis  
  Publisher IMPRIMA Place of Publication Editor Antonio Lopez;Onay Urfalioglu  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-124793-0-0 Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number (up) Admin @ si @ Gur2022 Serial 3712  
Permanent link to this record
 

 
Author Murad Al Haj edit  openurl
  Title Looking at Faces: Detection, Tracking and Pose Estimation Type Book Whole
  Year 2013 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Humans can effortlessly perceive faces, follow them over space and time, and decode their rich content, such as pose, identity and expression. However, despite many decades of research on automatic facial perception in areas like face detection, expression recognition, pose estimation and face recognition, and despite many successes, a complete solution remains elusive. This thesis is dedicated to three problems in automatic face perception, namely face detection, face tracking and pose estimation.

In face detection, an initial simple model is presented that uses pixel-based heuristics to segment skin locations and hand-crafted rules to determine the locations of the faces present in an image. Different colorspaces are studied to judge whether a colorspace transformation can aid skin color detection. The output of this study is used in the design of a more complex face detector that is able to successfully generalize to different scenarios.

In face tracking, a framework that combines estimation and control in a joint scheme is presented to track a face with a single pan-tilt-zoom camera. While this work is mainly motivated by tracking faces, it can be easily applied atop of any detector to track different objects. The applicability of this method is demonstrated on simulated as well as real-life scenarios.

The last and most important part of this thesis is dedicate to monocular head pose estimation. In this part, a method based on partial least squares (PLS) regression is proposed to estimate pose and solve the alignment problem simultaneously. The contributions of this work are two-fold: 1) demonstrating that the proposed method achieves better than state-of-the-art results on the estimation problem and 2) developing a technique to reduce misalignment based on the learned PLS factors that outperform multiple instance learning (MIL) without the need for any re-training or the inclusion of misaligned samples in the training process, as normally done in MIL.
 
  Address Barcelona  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Jordi Gonzalez;Xavier Roca  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE Approved no  
  Call Number (up) Admin @ si @ Haj2013 Serial 2278  
Permanent link to this record
 

 
Author Lluis Pere de las Heras edit  isbn
openurl 
  Title Relational Models for Visual Understanding of Graphical Documents. Application to Architectural Drawings. Type Book Whole
  Year 2014 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Graphical documents express complex concepts using a visual language. This language consists of a vocabulary (symbols) and a syntax (structural relations between symbols) that articulate a semantic meaning in a certain context. Therefore, the automatic interpretation by computers of these sort of documents entails three main steps: the detection of the symbols, the extraction of the structural relations between these symbols, and the modeling of the knowledge that permits the extraction of the semantics. Di erent domains in graphical documents include: architectural and engineering drawings, maps, owcharts, etc.
Graphics Recognition in particular and Document Image Analysis in general are
born from the industrial need of interpreting a massive amount of digitalized documents after the emergence of the scanner. Although many years have passed, the graphical document understanding problem still seems to be far from being solved. The main reason is that the vast majority of the systems in the literature focus on very speci c problems, where the domain of the document dictates the implementation of the interpretation. As a result, it is dicult to reuse these strategies on di erent data and on di erent contexts, hindering thus the natural progress in the eld.
In this thesis, we face the graphical document understanding problem by proposing several relational models at di erent levels that are designed from a generic perspective. Firstly, we introduce three di erent strategies for the detection of symbols. The fi rst method tackles the problem structurally, wherein general knowledge of the domain guides the detection. The second is a statistical method that learns the graphical appearance of the symbols and easily adapts to the big variability of the problem. The third method is a combination of the previous two methods that inherits their respective strengths, i.e. copes the big variability and does not need annotated data. Secondly, we present two relational strategies that tackle the problem of the visual context extraction. The fi rst one is a full bottom up method that heuristically searches in a graph representation the contextual relations between symbols. Contrarily, the second is syntactic method that models probabilistically the structure of the documents. It automatically learns the model, which guides the inference algorithm to encounter the best structural representation for a given input. Finally, we construct a knowledge-based model consisting of an ontological de nition of the domain and real data. This model permits to perform contextual reasoning and to detect semantic inconsistencies within the data. We evaluate the suitability of the proposed contributions in the framework of floor plan interpretation. Since there is no standard in the modeling of these documents there exists an enormous notation variability from plan to plan in terms of vocabulary and syntax. Therefore, floor plan interpretation is a relevant task in the graphical document understanding problem. It is also worth to mention that we make freely available all the resources used in this thesis {the data, the tool used to generate the data, and the evaluation scripts{ with the aim of fostering research in the graphical document understanding task.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Gemma Sanchez  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-940902-8-8 Medium  
  Area Expedition Conference  
  Notes DAG; 600.077 Approved no  
  Call Number (up) Admin @ si @ Her2014 Serial 2574  
Permanent link to this record
 

 
Author Lei Kang edit  isbn
openurl 
  Title Robust Handwritten Text Recognition in Scarce Labeling Scenarios: Disentanglement, Adaptation and Generation Type Book Whole
  Year 2020 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Handwritten documents are not only preserved in historical archives but also widely used in administrative documents such as cheques and claims. With the rise of the deep learning era, many state-of-the-art approaches have achieved good performance on specific datasets for Handwritten Text Recognition (HTR). However, it is still challenging to solve real use cases because of the varied handwriting styles across different writers and the limited labeled data. Thus, both explorin a more robust handwriting recognition architectures and proposing methods to diminish the gap between the source and target data in an unsupervised way are
demanded.
In this thesis, firstly, we explore novel architectures for HTR, from Sequence-to-Sequence (Seq2Seq) method with attention mechanism to non-recurrent Transformer-based method. Secondly, we focus on diminishing the performance gap between source and target data in an unsupervised way. Finally, we propose a group of generative methods for handwritten text images, which could be utilized to increase the training set to obtain a more robust recognizer. In addition, by simply modifying the generative method and joining it with a recognizer, we end up with an effective disentanglement method to distill textual content from handwriting styles so as to achieve a generalized recognition performance.
We outperform state-of-the-art HTR performances in the experimental results among different scientific and industrial datasets, which prove the effectiveness of the proposed methods. To the best of our knowledge, the non-recurrent recognizer and the disentanglement method are the first contributions in the handwriting recognition field. Furthermore, we have outlined the potential research lines, which would be interesting to explore in the future.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Alicia Fornes;Marçal Rusiñol;Mauricio Villegas  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-122714-0-9 Medium  
  Area Expedition Conference  
  Notes DAG; 600.121 Approved no  
  Call Number (up) Admin @ si @ Kan20 Serial 3482  
Permanent link to this record
 

 
Author Fahad Shahbaz Khan edit  openurl
  Title Coloring bag-of-words based image representations Type Book Whole
  Year 2011 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Put succinctly, the bag-of-words based image representation is the most successful approach for object and scene recognition. Within the bag-of-words framework the optimal fusion of multiple cues, such as shape, texture and color, still remains an active research domain. There exist two main approaches to combine color and shape information within the bag-of-words framework. The first approach called, early fusion, fuses color and shape at the feature level as a result of which a joint colorshape vocabulary is produced. The second approach, called late fusion, concatenates histogram representation of both color and shape, obtained independently. In the first part of this thesis, we analyze the theoretical implications of both early and late feature fusion. We demonstrate that both these approaches are suboptimal for a subset of object categories. Consequently, we propose a novel method for recognizing object categories when using multiple cues by separately processing the shape and color cues and combining them by modulating the shape features by category specific color attention. Color is used to compute bottom-up and top-down attention maps. Subsequently, the color attention maps are used to modulate the weights of the shape features. Shape features are given more weight in regions with higher attention and vice versa. The approach is tested on several benchmark object recognition data sets and the results clearly demonstrate the effectiveness of our proposed method. In the second part of the thesis, we investigate the problem of obtaining compact spatial pyramid representations for object and scene recognition. Spatial pyramids have been successfully applied to incorporate spatial information into bag-of-words based image representation. However, a major drawback of spatial pyramids is that it leads to high dimensional image representations. We present a novel framework for obtaining compact pyramid representation. The approach reduces the size of a high dimensional pyramid representation upto an order of magnitude without any significant reduction in accuracy. Moreover, we also investigate the optimal combination of multiple features such as color and shape within the context of our compact pyramid representation. Finally, we describe a novel technique to build discriminative visual words from multiple cues learned independently from training images. To this end, we use an information theoretic vocabulary compression technique to find discriminative combinations of visual cues and the resulting visual vocabulary is compact, has the cue binding property, and supports individual weighting of cues in the final image representation. The approach is tested on standard object recognition data sets. The results obtained clearly demonstrate the effectiveness of our approach.  
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Place of Publication Editor Joost Van de Weijer;Maria Vanrell  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes CIC Approved no  
  Call Number (up) Admin @ si @ Kha2011 Serial 1838  
Permanent link to this record
 

 
Author Xialei Liu edit  isbn
openurl 
  Title Visual recognition in the wild: learning from rankings in small domains and continual learning in new domains Type Book Whole
  Year 2019 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Deep convolutional neural networks (CNNs) have achieved superior performance in many visual recognition application, such as image classification, detection and segmentation. In this thesis we address two limitations of CNNs. Training deep CNNs requires huge amounts of labeled data, which is expensive and labor intensive to collect. Another limitation is that training CNNs in a continual learning setting is still an open research question. Catastrophic forgetting is very likely when adapting trained models to new environments or new tasks. Therefore, in this thesis, we aim to improve CNNs for applications with limited data and to adapt CNNs continually to new tasks.
Self-supervised learning leverages unlabelled data by introducing an auxiliary task for which data is abundantly available. In the first part of the thesis, we show how rankings can be used as a proxy self-supervised task for regression problems. Then we propose an efficient backpropagation technique for Siamese networks which prevents the redundant computation introduced by the multi-branch network architecture. In addition, we show that measuring network uncertainty on the self-supervised proxy task is a good measure of informativeness of unlabeled data. This can be used to drive an algorithm for active learning. We then apply our framework on two regression problems: Image Quality Assessment (IQA) and Crowd Counting. For both, we show how to automatically generate ranked image sets from unlabeled data. Our results show that networks trained to regress to the ground truth targets for labeled data and to simultaneously learn to rank unlabeled data obtain significantly better, state-of-the-art results. We further show that active learning using rankings can reduce labeling effort by up to 50\% for both IQA and crowd counting.
In the second part of the thesis, we propose two approaches to avoiding catastrophic forgetting in sequential task learning scenarios. The first approach is derived from Elastic Weight Consolidation, which uses a diagonal Fisher Information Matrix (FIM) to measure the importance of the parameters of the network. However the diagonal assumption is unrealistic. Therefore, we approximately diagonalize the FIM using a set of factorized rotation parameters. This leads to significantly better performance on continual learning of sequential tasks. For the second approach, we show that forgetting manifests differently at different layers in the network and propose a hybrid approach where distillation is used in the feature extractor and replay in the classifier via feature generation. Our method addresses the limitations of generative image replay and probability distillation (i.e. learning without forgetting) and can naturally aggregate new tasks in a single, well-calibrated classifier. Experiments confirm that our proposed approach outperforms the baselines and some start-of-the-art methods.
 
  Address December 2019  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Joost Van de Weijer;Andrew Bagdanov  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-121011-4-0 Medium  
  Area Expedition Conference  
  Notes LAMP; 600.120 Approved no  
  Call Number (up) Admin @ si @ Liu2019 Serial 3396  
Permanent link to this record
 

 
Author David Lloret edit  openurl
  Title Medical Image Registration Based on a Creaseress Measure. Type Book Whole
  Year 2002 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Place of Publication Editor Joan Serrat  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) Admin @ si @ Llo2002 Serial 321  
Permanent link to this record
 

 
Author Meysam Madadi edit  isbn
openurl 
  Title Human Segmentation, Pose Estimation and Applications Type Book Whole
  Year 2017 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Automatic analyzing humans in photographs or videos has great potential applications in computer vision, including medical diagnosis, sports, entertainment, movie editing and surveillance, just to name a few. Body, face and hand are the most studied components of humans. Body has many variabilities in shape and clothing along with high degrees of freedom in pose. Face has many muscles causing many visible deformity, beside variable shape and hair style. Hand is a small object, moving fast and has high degrees of freedom. Adding human characteristics to all aforementioned variabilities makes human analysis quite a challenging task.
In this thesis, we developed human segmentation in different modalities. In a first scenario, we segmented human body and hand in depth images using example-based shape warping. We developed a shape descriptor based on shape context and class probabilities of shape regions to extract nearest neighbors. We then considered rigid affine alignment vs. nonrigid iterative shape warping. In a second scenario, we segmented face in RGB images using convolutional neural networks (CNN). We modeled conditional random field with recurrent neural networks. In our model pair-wise kernels are not fixed and learned during training. We trained the network end-to-end using adversarial networks which improved hair segmentation by a high margin.
We also worked on 3D hand pose estimation in depth images. In a generative approach, we fitted a finger model separately for each finger based on our example-based rigid hand segmentation. We minimized an energy function based on overlapping area, depth discrepancy and finger collisions. We also applied linear models in joint trajectory space to refine occluded joints based on visible joints error and invisible joints trajectory smoothness. In a CNN-based approach, we developed a tree-structure network to train specific features for each finger and fused them for global pose consistency. We also formulated physical and appearance constraints as loss functions.
Finally, we developed a number of applications consisting of human soft biometrics measurement and garment retexturing. We also generated some datasets in this thesis consisting of human segmentation, synthetic hand pose, garment retexturing and Italian gestures.
 
  Address October 2017  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Sergio Escalera;Jordi Gonzalez  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-945373-3-2 Medium  
  Area Expedition Conference  
  Notes HUPBA Approved no  
  Call Number (up) Admin @ si @ Mad2017 Serial 3017  
Permanent link to this record
 

 
Author Andres Mafla edit  isbn
openurl 
  Title Leveraging Scene Text Information for Image Interpretation Type Book Whole
  Year 2022 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Until recently, most computer vision models remained illiterate, largely ignoring the semantically rich and explicit information contained in scene text. Recent progress in scene text detection and recognition has recently allowed exploring its role in a diverse set of open computer vision problems, e.g. image classification, image-text retrieval, image captioning, and visual question answering to name a few. The explicit semantics of scene text closely requires specific modeling similar to language. However, scene text is a particular signal that has to be interpreted according to a comprehensive perspective that encapsulates all the visual cues in an image. Incorporating this information is a straightforward task for humans, but if we are unfamiliar with a language or scripture, achieving a complete world understanding is impossible (e.a. visiting a foreign country with a different alphabet). Despite the importance of scene text, modeling it requires considering the several ways in which scene text interacts with an image, processing and fusing an additional modality. In this thesis, we mainly focus
on two tasks, scene text-based fine-grained image classification, and cross-modal retrieval. In both studied tasks we identify existing limitations in current approaches and propose plausible solutions. Concretely, in each chapter: i) We define a compact way to embed scene text that generalizes to unseen words at training time while performing in real-time. ii) We incorporate the previously learned scene text embedding to create an image-level descriptor that overcomes optical character recognition (OCR) errors which is well-suited to the fine-grained image classification task. iii) We design a region-level reasoning network that learns the interaction through semantics among salient visual regions and scene text instances. iv) We employ scene text information in image-text matching and introduce the Scene Text Aware Cross-Modal retrieval StacMR task. We gather a dataset that incorporates scene text and design a model suited for the newly studied modality. v) We identify the drawbacks of current retrieval metrics in cross-modal retrieval. An image captioning metric is proposed as a way of better evaluating semantics in retrieved results. Ample experimentation shows that incorporating such semantics into a model yields better semantic results while
requiring significantly less data to converge.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher IMPRIMA Place of Publication Editor Dimosthenis Karatzas;Lluis Gomez  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-124793-6-2 Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number (up) Admin @ si @ Maf2022 Serial 3756  
Permanent link to this record
 

 
Author Javier Marin edit  openurl
  Title Pedestrian Detection Based on Local Experts Type Book Whole
  Year 2013 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract During the last decade vision-based human detection systems have started to play a key rolein multiple applications linked to driver assistance, surveillance, robot sensing and home automation.
Detecting humans is by far one of the most challenging tasks in Computer Vision.
This is mainly due to the high degree of variability in the human appearanceassociated to
the clothing, pose, shape and size. Besides, other factors such as cluttered scenarios, partial occlusions, or environmental conditions can make the detection task even harder.
Most promising methods of the state-of-the-art rely on discriminative learning paradigms which are fed with positive and negative examples. The training data is one of the most
relevant elements in order to build a robust detector as it has to cope the large variability of the target. In order to create this dataset human supervision is required. The drawback at this point is the arduous effort of annotating as well as looking for such claimed variability.
In this PhD thesis we address two recurrent problems in the literature. In the first stage,we aim to reduce the consuming task of annotating, namely, by using computer graphics.
More concretely, we develop a virtual urban scenario for later generating a pedestrian dataset.
Then, we train a detector using this dataset, and finally we assess if this detector can be successfully applied in a real scenario.
In the second stage, we focus on increasing the robustness of our pedestrian detectors
under partial occlusions. In particular, we present a novel occlusion handling approach to increase the performance of block-based holistic methods under partial occlusions. For this purpose, we make use of local experts via a RandomSubspaceMethod (RSM) to handle these cases. If the method infers a possible partial occlusion, then the RSM, based on performance statistics obtained from partially occluded data, is applied. The last objective of this thesis
is to propose a robust pedestrian detector based on an ensemble of local experts. To achieve this goal, we use the random forest paradigm, where the trees act as ensembles an their nodesare the local experts. In particular, each expert focus on performing a robust classification ofa pedestrian body patch. This approach offers computational efficiency and far less design complexity when compared to other state-of-the-artmethods, while reaching better accuracy
 
  Address Barcelona  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Antonio Lopez;Jaume Amores  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number (up) Admin @ si @ Mar2013 Serial 2280  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: