|   | 
Details
   web
Records
Author H. Emrah Tasli; Jan van Gemert; Theo Gevers
Title Spot the differences: from a photograph burst to the single best picture Type Conference Article
Year 2013 Publication 21ST ACM International Conference on Multimedia Abbreviated Journal
Volume Issue Pages 729-732
Keywords
Abstract With the rise of the digital camera, people nowadays typically take several near-identical photos of the same scene to maximize the chances of a good shot. This paper proposes a user-friendly tool for exploring a personal photo gallery for selecting or even creating the best shot of a scene between its multiple alternatives. This functionality is realized through a graphical user interface where the best viewpoint can be selected from a generated panorama of the scene. Once the viewpoint is selected, the user is able to go explore possible alternatives coming from the other images. Using this tool, one can explore a photo gallery efficiently. Moreover, additional compositions from other images are also possible. With such additional compositions, one can go from a burst of photographs to the single best one. Even funny compositions of images, where you can duplicate a person in the same image, are possible with our proposed tool.
Address Barcelona
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ACM-MM
Notes ALTRES;ISE Approved no
Call Number (up) TGG2013 Serial 2368
Permanent link to this record
 

 
Author David Vazquez; Jorge Bernal; F. Javier Sanchez; Gloria Fernandez Esparrach; Antonio Lopez; Adriana Romero; Michal Drozdzal; Aaron Courville
Title A Benchmark for Endoluminal Scene Segmentation of Colonoscopy Images Type Journal Article
Year 2017 Publication Journal of Healthcare Engineering Abbreviated Journal JHCE
Volume Issue Pages 2040-2295
Keywords Colonoscopy images; Deep Learning; Semantic Segmentation
Abstract Colorectal cancer (CRC) is the third cause of cancer death world-wide. Currently, the standard approach to reduce CRC-related mortality is to perform regular screening in search for polyps and colonoscopy is the screening tool of choice. The main limitations of this screening procedure are polyp miss- rate and inability to perform visual assessment of polyp malignancy. These drawbacks can be reduced by designing Decision Support Systems (DSS) aim- ing to help clinicians in the different stages of the procedure by providing endoluminal scene segmentation. Thus, in this paper, we introduce an extended benchmark of colonoscopy image segmentation, with the hope of establishing a new strong benchmark for colonoscopy image analysis research. The proposed dataset consists of 4 relevant classes to inspect the endolumninal scene, tar- geting different clinical needs. Together with the dataset and taking advantage of advances in semantic segmentation literature, we provide new baselines by training standard fully convolutional networks (FCN). We perform a compar- ative study to show that FCN significantly outperform, without any further post-processing, prior results in endoluminal scene segmentation, especially with respect to polyp segmentation and localization.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ADAS; MV; 600.075; 600.085; 600.076; 601.281; 600.118 Approved no
Call Number (up) VBS2017b Serial 2940
Permanent link to this record
 

 
Author Sergio Vera; Debora Gil; Agnes Borras; F. Javier Sanchez; Frederic Perez; Marius G. Linguraru
Title Computation and Evaluation of Medial Surfaces for Shape Representation of Abdominal Organs Type Conference Article
Year 2011 Publication Workshop on Computational and Clinical Applications in Abdominal Imaging Abbreviated Journal
Volume 7029 Issue Pages 223-230
Keywords
Abstract Medial representations are powerful tools for describing and parameterizing the volumetric shape of anatomical structures. Existing methods show excellent results when applied to 2D objects, but their quality drops across dimensions. This paper contributes to the computation of medial manifolds in two aspects. First, we provide a standard scheme for the computation of medial manifolds that avoid degenerated medial axis segments; second, we introduce an energy based method which performs independently of the dimension. We evaluate quantitatively the performance of our method with respect to existing approaches, by applying them to synthetic shapes of known medial geometry. Finally, we show results on shape representation of multiple abdominal organs, exploring the use of medial manifolds for the representation of multi-organ relations.
Address Nice, France
Corporate Author Thesis
Publisher Springer Berlin Heidelberg Place of Publication Editor In H. Yoshida et al
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ABDI
Notes IAM; MV Approved no
Call Number (up) VGB2011 Serial 2036
Permanent link to this record
 

 
Author David Vazquez; Antonio Lopez; Daniel Ponsa; David Geronimo
Title Interactive Training of Human Detectors Type Book Chapter
Year 2013 Publication Multiodal Interaction in Image and Video Applications Abbreviated Journal
Volume 48 Issue Pages 169-182
Keywords Pedestrian Detection; Virtual World; AdaBoost; Domain Adaptation
Abstract Image based human detection remains as a challenging problem. Most promising detectors rely on classifiers trained with labelled samples. However, labelling is a manual labor intensive step. To overcome this problem we propose to collect images of pedestrians from a virtual city, i.e., with automatic labels, and train a pedestrian detector with them, which works fine when such virtual-world data are similar to testing one, i.e., real-world pedestrians in urban areas. When testing data is acquired in different conditions than training one, e.g., human detection in personal photo albums, dataset shift appears. In previous work, we cast this problem as one of domain adaptation and solve it with an active learning procedure. In this work, we focus on the same problem but evaluating a different set of faster to compute features, i.e., Haar, EOH and their combination. In particular, we train a classifier with virtual-world data, using such features and Real AdaBoost as learning machine. This classifier is applied to real-world training images. Then, a human oracle interactively corrects the wrong detections, i.e., few miss detections are manually annotated and some false ones are pointed out too. A low amount of manual annotation is fixed as restriction. Real- and virtual-world difficult samples are combined within what we call cool world and we retrain the classifier with this data. Our experiments show that this adapted classifier is equivalent to the one trained with only real-world data but requiring 90% less manual annotations.
Address Springer Heidelberg New York Dordrecht London
Corporate Author Thesis
Publisher Springer Berlin Heidelberg Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1868-4394 ISBN 978-3-642-35931-6 Medium
Area Expedition Conference
Notes ADAS; 600.057; 600.054; 605.203 Approved no
Call Number (up) VLP2013; ADAS @ adas @ vlp2013 Serial 2193
Permanent link to this record
 

 
Author Jiaolong Xu; Sebastian Ramos; David Vazquez; Antonio Lopez
Title Incremental Domain Adaptation of Deformable Part-based Models Type Conference Article
Year 2014 Publication 25th British Machine Vision Conference Abbreviated Journal
Volume Issue Pages
Keywords Pedestrian Detection; Part-based models; Domain Adaptation
Abstract Nowadays, classifiers play a core role in many computer vision tasks. The underlying assumption for learning classifiers is that the training set and the deployment environment (testing) follow the same probability distribution regarding the features used by the classifiers. However, in practice, there are different reasons that can break this constancy assumption. Accordingly, reusing existing classifiers by adapting them from the previous training environment (source domain) to the new testing one (target domain)
is an approach with increasing acceptance in the computer vision community. In this paper we focus on the domain adaptation of deformable part-based models (DPMs) for object detection. In particular, we focus on a relatively unexplored scenario, i.e. incremental domain adaptation for object detection assuming weak-labeling. Therefore, our algorithm is ready to improve existing source-oriented DPM-based detectors as soon as a little amount of labeled target-domain training data is available, and keeps improving as more of such data arrives in a continuous fashion. For achieving this, we follow a multiple
instance learning (MIL) paradigm that operates in an incremental per-image basis. As proof of concept, we address the challenging scenario of adapting a DPM-based pedestrian detector trained with synthetic pedestrians to operate in real-world scenarios. The obtained results show that our incremental adaptive models obtain equally good accuracy results as the batch learned models, while being more flexible for handling continuously arriving target-domain data.
Address Nottingham; uk; September 2014
Corporate Author Thesis
Publisher BMVA Press Place of Publication Editor Valstar, Michel and French, Andrew and Pridmore, Tony
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference BMVC
Notes ADAS; 600.057; 600.054; 600.076 Approved no
Call Number (up) XRV2014c; ADAS @ adas @ xrv2014c Serial 2455
Permanent link to this record
 

 
Author Jiaolong Xu; David Vazquez; Antonio Lopez; Javier Marin; Daniel Ponsa
Title Learning a Multiview Part-based Model in Virtual World for Pedestrian Detection Type Conference Article
Year 2013 Publication IEEE Intelligent Vehicles Symposium Abbreviated Journal
Volume Issue Pages 467 - 472
Keywords Pedestrian Detection; Virtual World; Part based
Abstract State-of-the-art deformable part-based models based on latent SVM have shown excellent results on human detection. In this paper, we propose to train a multiview deformable part-based model with automatically generated part examples from virtual-world data. The method is efficient as: (i) the part detectors are trained with precisely extracted virtual examples, thus no latent learning is needed, (ii) the multiview pedestrian detector enhances the performance of the pedestrian root model, (iii) a top-down approach is used for part detection which reduces the searching space. We evaluate our model on Daimler and Karlsruhe Pedestrian Benchmarks with publicly available Caltech pedestrian detection evaluation framework and the result outperforms the state-of-the-art latent SVM V4.0, on both average miss rate and speed (our detector is ten times faster).
Address Gold Coast; Australia; June 2013
Corporate Author Thesis
Publisher IEEE Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1931-0587 ISBN 978-1-4673-2754-1 Medium
Area Expedition Conference IV
Notes ADAS; 600.054; 600.057 Approved no
Call Number (up) XVL2013; ADAS @ adas @ xvl2013a Serial 2214
Permanent link to this record
 

 
Author Jiaolong Xu; David Vazquez; Sebastian Ramos; Antonio Lopez; Daniel Ponsa
Title Adapting a Pedestrian Detector by Boosting LDA Exemplar Classifiers Type Conference Article
Year 2013 Publication CVPR Workshop on Ground Truth – What is a good dataset? Abbreviated Journal
Volume Issue Pages 688 - 693
Keywords Pedestrian Detection; Domain Adaptation
Abstract Training vision-based pedestrian detectors using synthetic datasets (virtual world) is a useful technique to collect automatically the training examples with their pixel-wise ground truth. However, as it is often the case, these detectors must operate in real-world images, experiencing a significant drop of their performance. In fact, this effect also occurs among different real-world datasets, i.e. detectors' accuracy drops when the training data (source domain) and the application scenario (target domain) have inherent differences. Therefore, in order to avoid this problem, it is required to adapt the detector trained with synthetic data to operate in the real-world scenario. In this paper, we propose a domain adaptation approach based on boosting LDA exemplar classifiers from both virtual and real worlds. We evaluate our proposal on multiple real-world pedestrian detection datasets. The results show that our method can efficiently adapt the exemplar classifiers from virtual to real world, avoiding drops in average precision over the 15%.
Address Portland; oregon; June 2013
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPRW
Notes ADAS; 600.054; 600.057; 601.217 Approved yes
Call Number (up) XVR2013; ADAS @ adas @ xvr2013a Serial 2220
Permanent link to this record
 

 
Author Shiqi Yang; Kai Wang; Luis Herranz; Joost Van de Weijer
Title On Implicit Attribute Localization for Generalized Zero-Shot Learning Type Journal Article
Year 2021 Publication IEEE Signal Processing Letters Abbreviated Journal
Volume 28 Issue Pages 872 - 876
Keywords
Abstract Zero-shot learning (ZSL) aims to discriminate images from unseen classes by exploiting relations to seen classes via their attribute-based descriptions. Since attributes are often related to specific parts of objects, many recent works focus on discovering discriminative regions. However, these methods usually require additional complex part detection modules or attention mechanisms. In this paper, 1) we show that common ZSL backbones (without explicit attention nor part detection) can implicitly localize attributes, yet this property is not exploited. 2) Exploiting it, we then propose SELAR, a simple method that further encourages attribute localization, surprisingly achieving very competitive generalized ZSL (GZSL) performance when compared with more complex state-of-the-art methods. Our findings provide useful insight for designing future GZSL methods, and SELAR provides an easy to implement yet strong baseline.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes LAMP; 600.120 Approved no
Call Number (up) YWH2021 Serial 3563
Permanent link to this record