|   | 
Details
   web
Records
Author Vincenzo Lomonaco; Lorenzo Pellegrini; Andrea Cossu; Antonio Carta; Gabriele Graffieti; Tyler L. Hayes; Matthias De Lange; Marc Masana; Jary Pomponi; Gido van de Ven; Martin Mundt; Qi She; Keiland Cooper; Jeremy Forest; Eden Belouadah; Simone Calderara; German I. Parisi; Fabio Cuzzolin; Andreas Tolias; Simone Scardapane; Luca Antiga; Subutai Amhad; Adrian Popescu; Christopher Kanan; Joost Van de Weijer; Tinne Tuytelaars; Davide Bacciu; Davide Maltoni
Title Avalanche: an End-to-End Library for Continual Learning Type Conference Article
Year 2021 Publication 34th IEEE Conference on Computer Vision and Pattern Recognition Workshops Abbreviated Journal
Volume Issue Pages 3595-3605
Keywords
Abstract Learning continually from non-stationary data streams is a long-standing goal and a challenging problem in machine learning. Recently, we have witnessed a renewed and fast-growing interest in continual learning, especially within the deep learning community. However, algorithmic solutions are often difficult to re-implement, evaluate and port across different settings, where even results on standard benchmarks are hard to reproduce. In this work, we propose Avalanche, an open-source end-to-end library for continual learning research based on PyTorch. Avalanche is designed to provide a shared and collaborative codebase for fast prototyping, training, and reproducible evaluation of continual learning algorithms.
Address Virtual; June 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPRW
Notes LAMP; 600.120 Approved no
Call Number (down) Admin @ si @ LPC2021 Serial 3567
Permanent link to this record
 

 
Author Joan Marc Llargues Asensio; Juan Peralta; Raul Arrabales; Manuel Gonzalez Bedia; Paulo Cortez; Antonio Lopez
Title Artificial Intelligence Approaches for the Generation and Assessment of Believable Human-Like Behaviour in Virtual Characters Type Journal Article
Year 2014 Publication Expert Systems With Applications Abbreviated Journal EXSY
Volume 41 Issue 16 Pages 7281–7290
Keywords Turing test; Human-like behaviour; Believability; Non-player characters; Cognitive architectures; Genetic algorithm; Artificial neural networks
Abstract Having artificial agents to autonomously produce human-like behaviour is one of the most ambitious original goals of Artificial Intelligence (AI) and remains an open problem nowadays. The imitation game originally proposed by Turing constitute a very effective method to prove the indistinguishability of an artificial agent. The behaviour of an agent is said to be indistinguishable from that of a human when observers (the so-called judges in the Turing test) cannot tell apart humans and non-human agents. Different environments, testing protocols, scopes and problem domains can be established to develop limited versions or variants of the original Turing test. In this paper we use a specific version of the Turing test, based on the international BotPrize competition, built in a First-Person Shooter video game, where both human players and non-player characters interact in complex virtual environments. Based on our past experience both in the BotPrize competition and other robotics and computer game AI applications we have developed three new more advanced controllers for believable agents: two based on a combination of the CERA–CRANIUM and SOAR cognitive architectures and other based on ADANN, a system for the automatic evolution and adaptation of artificial neural networks. These two new agents have been put to the test jointly with CCBot3, the winner of BotPrize 2010 competition (Arrabales et al., 2012), and have showed a significant improvement in the humanness ratio. Additionally, we have confronted all these bots to both First-person believability assessment (BotPrize original judging protocol) and Third-person believability assessment, demonstrating that the active involvement of the judge has a great impact in the recognition of human-like behaviour.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ADAS; 600.055; 600.057; 600.076 Approved no
Call Number (down) Admin @ si @ LPA2014 Serial 2500
Permanent link to this record
 

 
Author Antonio Lopez
Title Pedestrian Detection Systems Type Book Chapter
Year 2018 Publication Wiley Encyclopedia of Electrical and Electronics Engineering Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Pedestrian detection is a highly relevant topic for both advanced driver assistance systems (ADAS) and autonomous driving. In this entry, we review the ideas behind pedestrian detection systems from the point of view of perception based on computer vision and machine learning.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ADAS; 600.118 Approved no
Call Number (down) Admin @ si @ Lop2018 Serial 3230
Permanent link to this record
 

 
Author Spencer Low; Oliver Nina; Angel Sappa; Erik Blasch; Nathan Inkawhich
Title Multi-Modal Aerial View Object Classification Challenge Results-PBVS 2023 Type Conference Article
Year 2023 Publication Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops Abbreviated Journal
Volume Issue Pages 412-421
Keywords
Abstract This paper presents the findings and results of the third edition of the Multi-modal Aerial View Object Classification (MAVOC) challenge in a detailed and comprehensive manner. The challenge consists of two tracks. The primary aim of both tracks is to encourage research into building recognition models that utilize both synthetic aperture radar (SAR) and electro-optical (EO) imagery. Participating teams are encouraged to develop multi-modal approaches that incorporate complementary information from both domains. While the 2021 challenge demonstrated the feasibility of combining both modalities, the 2022 challenge expanded on the capability of multi-modal models. The 2023 challenge introduces a refined version of the UNICORN dataset and demonstrates significant improvements made. The 2023 challenge adopts an updated UNIfied CO-incident Optical and Radar for recognitioN (UNICORN V2) dataset and competition format. Two tasks are featured: SAR classification and SAR + EO classification. In addition to measuring accuracy of models, we also introduce out-of-distribution measures to encourage model robustness.The majority of this paper is dedicated to discussing the top performing methods and evaluating their performance on our blind test set. It is worth noting that all of the top ten teams outperformed the Resnet-50 baseline. The top team for SAR classification achieved a 173% performance improvement over the baseline, while the top team for SAR + EO classification achieved a 175% improvement.
Address Vancouver; Canada; June 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPRW
Notes MSIAU Approved no
Call Number (down) Admin @ si @ LNS2023b Serial 3915
Permanent link to this record
 

 
Author Spencer Low; Oliver Nina; Angel Sappa; Erik Blasch; Nathan Inkawhich
Title Multi-Modal Aerial View Image Challenge: Translation From Synthetic Aperture Radar to Electro-Optical Domain Results-PBVS 2023 Type Conference Article
Year 2023 Publication Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops Abbreviated Journal
Volume Issue Pages 515-523
Keywords
Abstract This paper unveils the discoveries and outcomes of the inaugural iteration of the Multi-modal Aerial View Image Challenge (MAVIC) aimed at image translation. The primary objective of this competition is to stimulate research efforts towards the development of models capable of translating co-aligned images between multiple modalities. To accomplish the task of image translation, the competition utilizes images obtained from both synthetic aperture radar (SAR) and electro-optical (EO) sources. Specifically, the challenge centers on the translation from the SAR modality to the EO modality, an area of research that has garnered attention. The inaugural challenge demonstrates the feasibility of the task. The dataset utilized in this challenge is derived from the UNIfied COincident Optical and Radar for recognitioN (UNICORN) dataset. We introduce an new version of the UNICORN dataset that is focused on enabling the sensor translation task. Performance evaluation is conducted using a combination of measures to ensure high fidelity and high accuracy translations.
Address Vancouver; Canada; June 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPRW
Notes MSIAU Approved no
Call Number (down) Admin @ si @ LNS2023a Serial 3913
Permanent link to this record
 

 
Author Spencer Low; Oliver Nina; Angel Sappa; Erik Blasch; Nathan Inkawhich
Title Multi-Modal Aerial View Object Classification Challenge Results – PBVS 2022 Type Conference Article
Year 2022 Publication IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) Abbreviated Journal
Volume Issue Pages 350-358
Keywords
Abstract This paper details the results and main findings of the second iteration of the Multi-modal Aerial View Object Classification (MAVOC) challenge. The primary goal of both MAVOC challenges is to inspire research into methods for building recognition models that utilize both synthetic aperture radar (SAR) and electro-optical (EO) imagery. Teams are encouraged to develop multi-modal approaches that incorporate complementary information from both domains. While the 2021 challenge showed a proof of concept that both modalities could be used together, the 2022 challenge focuses on the detailed multi-modal methods. The 2022 challenge uses the same UNIfied Coincident Optical and Radar for recognitioN (UNICORN) dataset and competition format that was used in 2021. Specifically, the challenge focuses on two tasks, (1) SAR classification and (2) SAR + EO classification. The bulk of this document is dedicated to discussing the top performing methods and describing their performance on our blind test set. Notably, all of the top ten teams outperform a Resnet-18 baseline. For SAR classification, the top team showed a 129% improvement over baseline and an 8% average improvement from the 2021 winner. The top team for SAR + EO classification shows a 165% improvement with a 32% average improvement over 2021.
Address New Orleans; USA; June 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPRW
Notes MSIAU Approved no
Call Number (down) Admin @ si @ LNS2022 Serial 3768
Permanent link to this record
 

 
Author Dennis H. Lundtoft; Kamal Nasrollahi; Thomas B. Moeslund; Sergio Escalera
Title Spatiotemporal Facial Super-Pixels for Pain Detection Type Conference Article
Year 2016 Publication 9th Conference on Articulated Motion and Deformable Objects Abbreviated Journal
Volume Issue Pages
Keywords Facial images; Super-pixels; Spatiotemporal filters; Pain detection
Abstract Best student paper award.
Pain detection using facial images is of critical importance in many Health applications. Since pain is a spatiotemporal process, recent works on this topic employ facial spatiotemporal features to detect pain. These systems extract such features from the entire area of the face. In this paper, we show that by employing super-pixels we can divide the face into three regions, in a way that only one of these regions (about one third of the face) contributes to the pain estimation and the other two regions can be discarded. The experimental results on the UNBCMcMaster database show that the proposed system using this single region outperforms state-of-the-art systems in detecting no-pain scenarios, while it reaches comparable results in detecting weak and severe pain scenarios.
Address Palma de Mallorca; Spain; July 2016
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference AMDO
Notes HUPBA;MILAB Approved no
Call Number (down) Admin @ si @ LNM2016 Serial 2847
Permanent link to this record
 

 
Author Andre Litvin; Kamal Nasrollahi; Sergio Escalera; Cagri Ozcinar; Thomas B. Moeslund; Gholamreza Anbarjafari
Title A Novel Deep Network Architecture for Reconstructing RGB Facial Images from Thermal for Face Recognition Type Journal Article
Year 2019 Publication Multimedia Tools and Applications Abbreviated Journal MTAP
Volume 78 Issue 18 Pages 25259–25271
Keywords Fully convolutional networks; FusionNet; Thermal imaging; Face recognition
Abstract This work proposes a fully convolutional network architecture for RGB face image generation from a given input thermal face image to be applied in face recognition scenarios. The proposed method is based on the FusionNet architecture and increases robustness against overfitting using dropout after bridge connections, randomised leaky ReLUs (RReLUs), and orthogonal regularization. Furthermore, we propose to use a decoding block with resize convolution instead of transposed convolution to improve final RGB face image generation. To validate our proposed network architecture, we train a face classifier and compare its face recognition rate on the reconstructed RGB images from the proposed architecture, to those when reconstructing images with the original FusionNet, as well as when using the original RGB images. As a result, we are introducing a new architecture which leads to a more accurate network.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HuPBA; no menciona Approved no
Call Number (down) Admin @ si @ LNE2019 Serial 3318
Permanent link to this record
 

 
Author Agata Lapedriza; David Masip; D.Sanchez
Title Emotions Classification using Facial Action Units Recognition Type Conference Article
Year 2014 Publication 17th International Conference of the Catalan Association for Artificial Intelligence Abbreviated Journal
Volume 269 Issue Pages 55-64
Keywords
Abstract In this work we build a system for automatic emotion classification from image sequences. We analyze subtle changes in facial expressions by detecting a subset of 12 representative facial action units (AUs). Then, we classify emotions based on the output of these AUs classifiers, i.e. the presence/absence of AUs. We base the AUs classification upon a set of spatio-temporal geometric and appearance features for facial representation, fusing them within the emotion classifier. A decision tree is trained for emotion classifying, making the resulting model easy to interpret by capturing the combination of AUs activation that lead to a particular emotion. For Cohn-Kanade database, the proposed system classifies 7 emotions with a mean accuracy of near 90%, attaining a similar recognition accuracy in comparison with non-interpretable models that are not based in AUs detection.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-1-61499-451-0 Medium
Area Expedition Conference CCIA
Notes OR;MV Approved no
Call Number (down) Admin @ si @ LMS2014 Serial 2622
Permanent link to this record
 

 
Author Xialei Liu; Marc Masana; Luis Herranz; Joost Van de Weijer; Antonio Lopez; Andrew Bagdanov
Title Rotate your Networks: Better Weight Consolidation and Less Catastrophic Forgetting Type Conference Article
Year 2018 Publication 24th International Conference on Pattern Recognition Abbreviated Journal
Volume Issue Pages 2262-2268
Keywords
Abstract In this paper we propose an approach to avoiding catastrophic forgetting in sequential task learning scenarios. Our technique is based on a network reparameterization that approximately diagonalizes the Fisher Information Matrix of the network parameters. This reparameterization takes the form of
a factorized rotation of parameter space which, when used in conjunction with Elastic Weight Consolidation (which assumes a diagonal Fisher Information Matrix), leads to significantly better performance on lifelong learning of sequential tasks. Experimental results on the MNIST, CIFAR-100, CUB-200 and
Stanford-40 datasets demonstrate that we significantly improve the results of standard elastic weight consolidation, and that we obtain competitive results when compared to the state-of-the-art in lifelong learning without forgetting.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICPR
Notes LAMP; ADAS; 601.305; 601.109; 600.124; 600.106; 602.200; 600.120; 600.118 Approved no
Call Number (down) Admin @ si @ LMH2018 Serial 3160
Permanent link to this record
 

 
Author Laura Lopez-Fuentes; Sebastia Massanet; Manuel Gonzalez-Hidalgo
Title Image vignetting reduction via a maximization of fuzzy entropy Type Conference Article
Year 2017 Publication IEEE International Conference on Fuzzy Systems Abbreviated Journal
Volume Issue Pages
Keywords
Abstract In many computer vision applications, vignetting is an undesirable effect which must be removed in a pre-processing step. Recently, an algorithm for image vignetting correction has been presented by means of a minimization of log-intensity entropy. This method relies on an increase of the entropy of the image when it is affected with vignetting. In this paper, we propose a novel algorithm to reduce image vignetting via a maximization of the fuzzy entropy of the image. Fuzzy entropy quantifies the fuzziness degree of a fuzzy set and its value is also modified by the presence of vignetting. The experimental results show that this novel algorithm outperforms in most cases the algorithm based on the minimization of log-intensity entropy both from the qualitative and the quantitative point of view.
Address Napoles; Italia; July 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference FUZZ-IEEE
Notes LAMP; 600.120 Approved no
Call Number (down) Admin @ si @ LMG2017 Serial 2972
Permanent link to this record
 

 
Author Hunor Laczko; Meysam Madadi; Sergio Escalera; Jordi Gonzalez
Title A Generative Multi-Resolution Pyramid and Normal-Conditioning 3D Cloth Draping Type Conference Article
Year 2024 Publication Winter Conference on Applications of Computer Vision Abbreviated Journal
Volume Issue Pages 8709-8718
Keywords
Abstract RGB cloth generation has been deeply studied in the related literature, however, 3D garment generation remains an open problem. In this paper, we build a conditional variational autoencoder for 3D garment generation and draping. We propose a pyramid network to add garment details progressively in a canonical space, i.e. unposing and unshaping the garments w.r.t. the body. We study conditioning the network on surface normal UV maps, as an intermediate representation, which is an easier problem to optimize than 3D coordinates. Our results on two public datasets, CLOTH3D and CAPE, show that our model is robust, controllable in terms of detail generation by the use of multi-resolution pyramids, and achieves state-of-the-art results that can highly generalize to unseen garments, poses, and shapes even when training with small amounts of data.
Address Waikoloa; Hawai; USA; January 2024
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference WACV
Notes ISE; HUPBA Approved no
Call Number (down) Admin @ si @ LME2024 Serial 3996
Permanent link to this record
 

 
Author G. Lisanti; I. Masi; Andrew Bagdanov; Alberto del Bimbo
Title Person Re-identification by Iterative Re-weighted Sparse Ranking Type Journal Article
Year 2015 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI
Volume 37 Issue 8 Pages 1629 - 1642
Keywords
Abstract In this paper we introduce a method for person re-identification based on discriminative, sparse basis expansions of targets in terms of a labeled gallery of known individuals. We propose an iterative extension to sparse discriminative classifiers capable of ranking many candidate targets. The approach makes use of soft- and hard- re-weighting to redistribute energy among the most relevant contributing elements and to ensure that the best candidates are ranked at each iteration. Our approach also leverages a novel visual descriptor which we show to be discriminative while remaining robust to pose and illumination variations. An extensive comparative evaluation is given demonstrating that our approach achieves state-of-the-art performance on single- and multi-shot person re-identification scenarios on the VIPeR, i-LIDS, ETHZ, and CAVIAR4REID datasets. The combination of our descriptor and iterative sparse basis expansion improves state-of-the-art rank-1 performance by six percentage points on VIPeR and by 20 on CAVIAR4REID compared to other methods with a single gallery image per person. With multiple gallery and probe images per person our approach improves by 17 percentage points the state-of-the-art on i-LIDS and by 72 on CAVIAR4REID at rank-1. The approach is also quite efficient, capable of single-shot person re-identification over galleries containing hundreds of individuals at about 30 re-identifications per second.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0162-8828 ISBN Medium
Area Expedition Conference
Notes LAMP; 601.240; 600.079 Approved no
Call Number (down) Admin @ si @ LMB2015 Serial 2557
Permanent link to this record
 

 
Author Ajian Liu; Xuan Li; Jun Wan; Yanyan Liang; Sergio Escalera; Hugo Jair Escalante; Meysam Madadi; Yi Jin; Zhuoyuan Wu; Xiaogang Yu; Zichang Tan; Qi Yuan; Ruikun Yang; Benjia Zhou; Guodong Guo; Stan Z. Li
Title Cross-ethnicity Face Anti-spoofing Recognition Challenge: A Review Type Journal Article
Year 2020 Publication IET Biometrics Abbreviated Journal BIO
Volume 10 Issue 1 Pages 24-43
Keywords
Abstract Face anti-spoofing is critical to prevent face recognition systems from a security breach. The biometrics community has %possessed achieved impressive progress recently due the excellent performance of deep neural networks and the availability of large datasets. Although ethnic bias has been verified to severely affect the performance of face recognition systems, it still remains an open research problem in face anti-spoofing. Recently, a multi-ethnic face anti-spoofing dataset, CASIA-SURF CeFA, has been released with the goal of measuring the ethnic bias. It is the largest up to date cross-ethnicity face anti-spoofing dataset covering 3 ethnicities, 3 modalities, 1,607 subjects, 2D plus 3D attack types, and the first dataset including explicit ethnic labels among the recently released datasets for face anti-spoofing. We organized the Chalearn Face Anti-spoofing Attack Detection Challenge which consists of single-modal (e.g., RGB) and multi-modal (e.g., RGB, Depth, Infrared (IR)) tracks around this novel resource to boost research aiming to alleviate the ethnic bias. Both tracks have attracted 340 teams in the development stage, and finally 11 and 8 teams have submitted their codes in the single-modal and multi-modal face anti-spoofing recognition challenges, respectively. All the results were verified and re-ran by the organizing team, and the results were used for the final ranking. This paper presents an overview of the challenge, including its design, evaluation protocol and a summary of results. We analyze the top ranked solutions and draw conclusions derived from the competition. In addition we outline future work directions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HUPBA; no proj Approved no
Call Number (down) Admin @ si @ LLW2020b Serial 3523
Permanent link to this record
 

 
Author M. Li; Xialei Liu; Joost Van de Weijer; Bogdan Raducanu
Title Learning to Rank for Active Learning: A Listwise Approach Type Conference Article
Year 2020 Publication 25th International Conference on Pattern Recognition Abbreviated Journal
Volume Issue Pages 5587-5594
Keywords
Abstract Active learning emerged as an alternative to alleviate the effort to label huge amount of data for data hungry applications (such as image/video indexing and retrieval, autonomous driving, etc.). The goal of active learning is to automatically select a number of unlabeled samples for annotation (according to a budget), based on an acquisition function, which indicates how valuable a sample is for training the model. The learning loss method is a task-agnostic approach which attaches a module to learn to predict the target loss of unlabeled data, and select data with the highest loss for labeling. In this work, we follow this strategy but we define the acquisition function as a learning to rank problem and rethink the structure of the loss prediction module, using a simple but effective listwise approach. Experimental results on four datasets demonstrate that our method outperforms recent state-of-the-art active learning approaches for both image classification and regression tasks.
Address Virtual; January 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICPR
Notes LAMP; 600.120 Approved no
Call Number (down) Admin @ si @ LLW2020a Serial 3511
Permanent link to this record