|   | 
Details
   web
Records
Author Koen E.A. van de Sande; Theo Gevers; C.G.M. Snoek
Title Evaluating Color Descriptors for Object and Scene Recognition Type Journal Article
Year 2010 Publication IEEE Transaction on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI
Volume 32 Issue 9 Pages 1582 - 1596
Keywords
Abstract Impact factor: 5.308
Image category recognition is important to access visual information on the level of objects and scene types. So far, intensity-based descriptors have been widely used for feature extraction at salient points. To increase illumination invariance and discriminative power, color descriptors have been proposed. Because many different descriptors exist, a structured overview is required of color invariant descriptors in the context of image category recognition. Therefore, this paper studies the invariance properties and the distinctiveness of color descriptors (software to compute the color descriptors from this paper is available from http://www.colordescriptors.com) in a structured way. The analytical invariance properties of color descriptors are explored, using a taxonomy based on invariance properties with respect to photometric transformations, and tested experimentally using a data set with known illumination conditions. In addition, the distinctiveness of color descriptors is assessed experimentally using two benchmarks, one from the image domain and one from the video domain. From the theoretical and experimental results, it can be derived that invariance to light intensity changes and light color changes affects category recognition. The results further reveal that, for light intensity shifts, the usefulness of invariance is category-specific. Overall, when choosing a single descriptor and no prior knowledge about the data set and object and scene categories is available, the OpponentSIFT is recommended. Furthermore, a combined set of color descriptors outperforms intensity-based SIFT and improves category recognition by 8 percent on the PASCAL VOC 2007 and by 7 percent on the Mediamill Challenge.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0162-8828 ISBN Medium
Area Expedition Conference
Notes ALTRES;ISE Approved no
Call Number (up) Admin @ si @ SGS2010 Serial 1846
Permanent link to this record
 

 
Author Albert Ali Salah; Theo Gevers; Nicu Sebe; Alessandro Vinciarelli
Title Computer Vision for Ambient Intelligence Type Journal Article
Year 2011 Publication Journal of Ambient Intelligence and Smart Environments Abbreviated Journal JAISE
Volume 3 Issue 3 Pages 187-191
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ISE Approved no
Call Number (up) Admin @ si @ SGS2011a Serial 1725
Permanent link to this record
 

 
Author Koen E.A. van de Sande; Theo Gevers; Cees G.M. Snoek
Title Empowering Visual Categorization with the GPU Type Journal Article
Year 2011 Publication IEEE Transactions on Multimedia Abbreviated Journal TMM
Volume 13 Issue 1 Pages 60-70
Keywords
Abstract Visual categorization is important to manage large collections of digital images and video, where textual meta-data is often incomplete or simply unavailable. The bag-of-words model has become the most powerful method for visual categorization of images and video. Despite its high accuracy, a severe drawback of this model is its high computational cost. As the trend to increase computational power in newer CPU and GPU architectures is to increase their level of parallelism, exploiting this parallelism becomes an important direction to handle the computational cost of the bag-of-words approach. When optimizing a system based on the bag-of-words approach, the goal is to minimize the time it takes to process batches of images. Additionally, we also consider power usage as an evaluation metric. In this paper, we analyze the bag-of-words model for visual categorization in terms of computational cost and identify two major bottlenecks: the quantization step and the classification step. We address these two bottlenecks by proposing two efficient algorithms for quantization and classification by exploiting the GPU hardware and the CUDA parallel programming model. The algorithms are designed to (1) keep categorization accuracy intact, (2) decompose the problem and (3) give the same numerical results. In the experiments on large scale datasets it is shown that, by using a parallel implementation on the Geforce GTX260 GPU, classifying unseen images is 4.8 times faster than a quad-core CPU version on the Core i7 920, while giving the exact same numerical results. In addition, we show how the algorithms can be generalized to other applications, such as text retrieval and video retrieval. Moreover, when the obtained speedup is used to process extra video frames in a video retrieval benchmark, the accuracy of visual categorization is improved by 29%.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ISE Approved no
Call Number (up) Admin @ si @ SGS2011b Serial 1729
Permanent link to this record
 

 
Author Cesar de Souza; Adrien Gaidon; Eleonora Vig; Antonio Lopez
Title Sympathy for the Details: Dense Trajectories and Hybrid Classification Architectures for Action Recognition Type Conference Article
Year 2016 Publication 14th European Conference on Computer Vision Abbreviated Journal
Volume Issue Pages 697-716
Keywords
Abstract Action recognition in videos is a challenging task due to the complexity of the spatio-temporal patterns to model and the difficulty to acquire and learn on large quantities of video data. Deep learning, although a breakthrough for image classification and showing promise for videos, has still not clearly superseded action recognition methods using hand-crafted features, even when training on massive datasets. In this paper, we introduce hybrid video classification architectures based on carefully designed unsupervised representations of hand-crafted spatio-temporal features classified by supervised deep networks. As we show in our experiments on five popular benchmarks for action recognition, our hybrid model combines the best of both worlds: it is data efficient (trained on 150 to 10000 short clips) and yet improves significantly on the state of the art, including recent deep models trained on millions of manually labelled images and videos.
Address Amsterdam; The Netherlands; October 2016
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ECCV
Notes ADAS; 600.076; 600.085 Approved no
Call Number (up) Admin @ si @ SGV2016 Serial 2824
Permanent link to this record
 

 
Author Cesar de Souza; Adrien Gaidon; Eleonora Vig; Antonio Lopez
Title System and method for video classification using a hybrid unsupervised and supervised multi-layer architecture Type Patent
Year 2018 Publication US9946933B2 Abbreviated Journal
Volume Issue Pages
Keywords US9946933B2
Abstract A computer-implemented video classification method and system are disclosed. The method includes receiving an input video including a sequence of frames. At least one transformation of the input video is generated, each transformation including a sequence of frames. For the input video and each transformation, local descriptors are extracted from the respective sequence of frames. The local descriptors of the input video and each transformation are aggregated to form an aggregated feature vector with a first set of processing layers learned using unsupervised learning. An output classification value is generated for the input video, based on the aggregated feature vector with a second set of processing layers learned using supervised learning.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ADAS; 600.118 Approved no
Call Number (up) Admin @ si @ SGV2018 Serial 3255
Permanent link to this record
 

 
Author Nataliya Shapovalova
Title On Importance of Interaction and Context Type Report
Year 2010 Publication CVC Technical Report Abbreviated Journal
Volume 155 Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis Master's thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ISE Approved no
Call Number (up) Admin @ si @ Sha2010 Serial 1355
Permanent link to this record
 

 
Author Quan-sen Sun; Pheng-ann Heng; Zhong Jin; De-shen Xia
Title Face recognition based on generalized canonical correlation analysis Type Book Chapter
Year 2005 Publication Advances in Intelligent Computing, Lecture Notes in Computer Science, 3645: 958–967 Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address Hefei (China)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (up) Admin @ si @ SHJ2005 Serial 625
Permanent link to this record
 

 
Author Xinhang Song; Luis Herranz; Shuqiang Jiang
Title Depth CNNs for RGB-D Scene Recognition: Learning from Scratch Better than Transferring from RGB-CNNs Type Conference Article
Year 2017 Publication 31st AAAI Conference on Artificial Intelligence Abbreviated Journal
Volume Issue Pages
Keywords RGB-D scene recognition; weakly supervised; fine tune; CNN
Abstract Scene recognition with RGB images has been extensively studied and has reached very remarkable recognition levels, thanks to convolutional neural networks (CNN) and large scene datasets. In contrast, current RGB-D scene data is much more limited, so often leverages RGB large datasets, by transferring pretrained RGB CNN models and fine-tuning with the target RGB-D dataset. However, we show that this approach has the limitation of hardly reaching bottom layers, which is key to learn modality-specific features. In contrast, we focus on the bottom layers, and propose an alternative strategy to learn depth features combining local weakly supervised training from patches followed by global fine tuning with images. This strategy is capable of learning very discriminative depth-specific features with limited depth images, without resorting to Places-CNN. In addition we propose a modified CNN architecture to further match the complexity of the model and the amount of data available. For RGB-D scene recognition, depth and RGB features are combined by projecting them in a common space and further leaning a multilayer classifier, which is jointly optimized in an end-to-end network. Our framework achieves state-of-the-art accuracy on NYU2 and SUN RGB-D in both depth only and combined RGB-D data.
Address San Francisco CA; February 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference AAAI
Notes LAMP; 600.120 Approved no
Call Number (up) Admin @ si @ SHJ2017 Serial 2967
Permanent link to this record
 

 
Author J. Stöttinger; A. Hanbury; N. Sebe; Theo Gevers
Title Spars Color Interest Points for Image Retrieval and Object Categorization Type Journal Article
Year 2012 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP
Volume 21 Issue 5 Pages 2681-2692
Keywords
Abstract Impact factor 2010: 2.92
IF 2011/2012?: 3.32
Interest point detection is an important research area in the field of image processing and computer vision. In particular, image retrieval and object categorization heavily rely on interest point detection from which local image descriptors are computed for image matching. In general, interest points are based on luminance, and color has been largely ignored. However, the use of color increases the distinctiveness of interest points. The use of color may therefore provide selective search reducing the total number of interest points used for image matching. This paper proposes color interest points for sparse image representation. To reduce the sensitivity to varying imaging conditions, light-invariant interest points are introduced. Color statistics based on occurrence probability lead to color boosted points, which are obtained through saliency-based feature selection. Furthermore, a principal component analysis-based scale selection method is proposed, which gives a robust scale estimation per interest point. From large-scale experiments, it is shown that the proposed color interest point detector has higher repeatability than a luminance-based one. Furthermore, in the context of image retrieval, a reduced and predictable number of color features show an increase in performance compared to state-of-the-art interest points. Finally, in the context of object recognition, for the Pascal VOC 2007 challenge, our method gives comparable performance to state-of-the-art methods using only a small fraction of the features, reducing the computing time considerably.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1057-7149 ISBN Medium
Area Expedition Conference
Notes ALTRES;ISE Approved no
Call Number (up) Admin @ si @ SHS2012 Serial 1847
Permanent link to this record
 

 
Author Hassan Ahmed Sial
Title Estimating Light Effects from a Single Image: Deep Architectures and Ground-Truth Generation Type Book Whole
Year 2021 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract In this thesis, we explore how to estimate the effects of the light interacting with the scene objects from a single image. To achieve this goal, we focus on recovering intrinsic components like reflectance, shading, or light properties such as color and position using deep architectures. The success of these approaches relies on training on large and diversified image datasets. Therefore, we present several contributions on this such as: (a) a data-augmentation technique; (b) a ground-truth for an existing multi-illuminant dataset; (c) a family of synthetic datasets, SID for Surreal Intrinsic Datasets, with diversified backgrounds and coherent light conditions; and (d) a practical pipeline to create hybrid ground-truths to overcome the complexity of acquiring realistic light conditions in a massive way. In parallel with the creation of datasets, we trained different flexible encoder-decoder deep architectures incorporating physical constraints from the image formation models.

In the last part of the thesis, we apply all the previous experience to two different problems. Firstly, we create a large hybrid Doc3DShade dataset with real shading and synthetic reflectance under complex illumination conditions, that is used to train a two-stage architecture that improves the character recognition task in complex lighting conditions of unwrapped documents. Secondly, we tackle the problem of single image scene relighting by extending both, the SID dataset to present stronger shading and shadows effects, and the deep architectures to use intrinsic components to estimate new relit images.
Address September 2021
Corporate Author Thesis Ph.D. thesis
Publisher IMPRIMA Place of Publication Editor Maria Vanrell;Ramon Baldrich
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-122714-8-5 Medium
Area Expedition Conference
Notes CIC; Approved no
Call Number (up) Admin @ si @ Sia2021 Serial 3607
Permanent link to this record
 

 
Author Santiago Segui; Laura Igual; Jordi Vitria
Title Bagged One Class Classifiers in the Presence of Outliers Type Journal Article
Year 2013 Publication International Journal of Pattern Recognition and Artificial Intelligence Abbreviated Journal IJPRAI
Volume 27 Issue 5 Pages 1350014-1350035
Keywords One-class Classifier; Ensemble Methods; Bagging and Outliers
Abstract The problem of training classifiers only with target data arises in many applications where non-target data are too costly, difficult to obtain, or not available at all. Several one-class classification methods have been presented to solve this problem, but most of the methods are highly sensitive to the presence of outliers in the target class. Ensemble methods have therefore been proposed as a powerful way to improve the classification performance of binary/multi-class learning algorithms by introducing diversity into classifiers.
However, their application to one-class classification has been rather limited. In
this paper, we present a new ensemble method based on a non-parametric weighted bagging strategy for one-class classification, to improve accuracy in the presence of outliers. While the standard bagging strategy assumes a uniform data distribution, the method we propose here estimates a probability density based on a forest structure of the data. This assumption allows the estimation of data distribution from the computation of simple univariate and bivariate kernel densities. Experiments using original and noisy versions of 20 different datasets show that bagging ensemble methods applied to different one-class classifiers outperform base one-class classification methods. Moreover, we show that, in noisy versions of the datasets, the non-parametric weighted bagging strategy we propose outperforms the classical bagging strategy in a statistically significant way.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes OR; 600.046;MV Approved no
Call Number (up) Admin @ si @ SIV2013 Serial 2256
Permanent link to this record
 

 
Author Tomas Sixta; Julio C. S. Jacques Junior; Pau Buch Cardona; Eduard Vazquez; Sergio Escalera
Title FairFace Challenge at ECCV 2020: Analyzing Bias in Face Recognition Type Conference Article
Year 2020 Publication ECCV Workshops Abbreviated Journal
Volume 12540 Issue Pages 463-481
Keywords
Abstract This work summarizes the 2020 ChaLearn Looking at People Fair Face Recognition and Analysis Challenge and provides a description of the top-winning solutions and analysis of the results. The aim of the challenge was to evaluate accuracy and bias in gender and skin colour of submitted algorithms on the task of 1:1 face verification in the presence of other confounding attributes. Participants were evaluated using an in-the-wild dataset based on reannotated IJB-C, further enriched 12.5K new images and additional labels. The dataset is not balanced, which simulates a real world scenario where AI-based models supposed to present fair outcomes are trained and evaluated on imbalanced data. The challenge attracted 151 participants, who made more 1.8K submissions in total. The final phase of the challenge attracted 36 active teams out of which 10 exceeded 0.999 AUC-ROC while achieving very low scores in the proposed bias metrics. Common strategies by the participants were face pre-processing, homogenization of data distributions, the use of bias aware loss functions and ensemble models. The analysis of top-10 teams shows higher false positive rates (and lower false negative rates) for females with dark skin tone as well as the potential of eyeglasses and young age to increase the false positive rates too.
Address Virtual; August 2020
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ECCVW
Notes HUPBA Approved no
Call Number (up) Admin @ si @ SJB2020 Serial 3499
Permanent link to this record
 

 
Author Javier Selva; Anders S. Johansen; Sergio Escalera; Kamal Nasrollahi; Thomas B. Moeslund; Albert Clapes
Title Video transformers: A survey Type Journal Article
Year 2023 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI
Volume 45 Issue 11 Pages 12922-12943
Keywords Artificial Intelligence; Computer Vision; Self-Attention; Transformers; Video Representations
Abstract Transformer models have shown great success handling long-range interactions, making them a promising tool for modeling video. However, they lack inductive biases and scale quadratically with input length. These limitations are further exacerbated when dealing with the high dimensionality introduced by the temporal dimension. While there are surveys analyzing the advances of Transformers for vision, none focus on an in-depth analysis of video-specific designs. In this survey, we analyze the main contributions and trends of works leveraging Transformers to model video. Specifically, we delve into how videos are handled at the input level first. Then, we study the architectural changes made to deal with video more efficiently, reduce redundancy, re-introduce useful inductive biases, and capture long-term temporal dynamics. In addition, we provide an overview of different training regimes and explore effective self-supervised learning strategies for video. Finally, we conduct a performance comparison on the most common benchmark for Video Transformers (i.e., action classification), finding them to outperform 3D ConvNets even with less computational complexity.
Address 1 Nov. 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HUPBA; no menciona Approved no
Call Number (up) Admin @ si @ SJE2023 Serial 3823
Permanent link to this record
 

 
Author Quan-sen Sun; Zhong Jin; Pheng-ann Heng; De-shen Xia
Title A novel feature fusion method based on partial least squares regression Type Book Chapter
Year 2005 Publication Pattern Recognition and Data Mining, Lecture Notes in Computer Science, 3686: 268–277 Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address Bath (United Kingdom)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (up) Admin @ si @ SJH2005 Serial 626
Permanent link to this record
 

 
Author Xinhang Song; Shuqiang Jiang; Luis Herranz
Title Multi-Scale Multi-Feature Context Modeling for Scene Recognition in the Semantic Manifold Type Journal Article
Year 2017 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP
Volume 26 Issue 6 Pages 2721-2735
Keywords
Abstract Before the big data era, scene recognition was often approached with two-step inference using localized intermediate representations (objects, topics, and so on). One of such approaches is the semantic manifold (SM), in which patches and images are modeled as points in a semantic probability simplex. Patch models are learned resorting to weak supervision via image labels, which leads to the problem of scene categories co-occurring in this semantic space. Fortunately, each category has its own co-occurrence patterns that are consistent across the images in that category. Thus, discovering and modeling these patterns are critical to improve the recognition performance in this representation. Since the emergence of large data sets, such as ImageNet and Places, these approaches have been relegated in favor of the much more powerful convolutional neural networks (CNNs), which can automatically learn multi-layered representations from the data. In this paper, we address many limitations of the original SM approach and related works. We propose discriminative patch representations using neural networks and further propose a hybrid architecture in which the semantic manifold is built on top of multiscale CNNs. Both representations can be computed significantly faster than the Gaussian mixture models of the original SM. To combine multiple scales, spatial relations, and multiple features, we formulate rich context models using Markov random fields. To solve the optimization problem, we analyze global and local approaches, where a top-down hierarchical algorithm has the best performance. Experimental results show that exploiting different types of contextual relations jointly consistently improves the recognition accuracy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes LAMP; 600.120 Approved no
Call Number (up) Admin @ si @ SJH2017a Serial 2963
Permanent link to this record