toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Jose M. Armingol; Jorge Alfonso; Nourdine Aliane; Miguel Clavijo; Sergio Campos-Cordobes; Arturo de la Escalera; Javier del Ser; Javier Fernandez; Fernando Garcia; Felipe Jimenez; Antonio Lopez; Mario Mata edit  url
doi  openurl
  Title Environmental Perception for Intelligent Vehicles Type Book Chapter
  Year 2018 Publication Intelligent Vehicles. Enabling Technologies and Future Developments Abbreviated Journal  
  Volume Issue Pages 23–101  
  Keywords Computer vision; laser techniques; data fusion; advanced driver assistance systems; traffic monitoring systems; intelligent vehicles  
  Abstract Environmental perception represents, because of its complexity, a challenge for Intelligent Transport Systems due to the great variety of situations and different elements that can happen in road environments and that must be faced by these systems. In connection with this, so far there are a variety of solutions as regards sensors and methods, so the results of precision, complexity, cost, or computational load obtained by these works are different. In this chapter some systems based on computer vision and laser techniques are presented. Fusion methods are also introduced in order to provide advanced and reliable perception systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.118 Approved no  
  Call Number (up) Admin @ si @AAA2018 Serial 3046  
Permanent link to this record
 

 
Author Ivet Rafegas; Maria Vanrell edit   pdf
url  doi
openurl 
  Title Color encoding in biologically-inspired convolutional neural networks Type Journal Article
  Year 2018 Publication Vision Research Abbreviated Journal VR  
  Volume 151 Issue Pages 7-17  
  Keywords Color coding; Computer vision; Deep learning; Convolutional neural networks  
  Abstract Convolutional Neural Networks have been proposed as suitable frameworks to model biological vision. Some of these artificial networks showed representational properties that rival primate performances in object recognition. In this paper we explore how color is encoded in a trained artificial network. It is performed by estimating a color selectivity index for each neuron, which allows us to describe the neuron activity to a color input stimuli. The index allows us to classify whether they are color selective or not and if they are of a single or double color. We have determined that all five convolutional layers of the network have a large number of color selective neurons. Color opponency clearly emerges in the first layer, presenting 4 main axes (Black-White, Red-Cyan, Blue-Yellow and Magenta-Green), but this is reduced and rotated as we go deeper into the network. In layer 2 we find a denser hue sampling of color neurons and opponency is reduced almost to one new main axis, the Bluish-Orangish coinciding with the dataset bias. In layers 3, 4 and 5 color neurons are similar amongst themselves, presenting different type of neurons that detect specific colored objects (e.g., orangish faces), specific surrounds (e.g., blue sky) or specific colored or contrasted object-surround configurations (e.g. blue blob in a green surround). Overall, our work concludes that color and shape representation are successively entangled through all the layers of the studied network, revealing certain parallelisms with the reported evidences in primate brains that can provide useful insight into intermediate hierarchical spatio-chromatic representations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes CIC; 600.051; 600.087 Approved no  
  Call Number (up) Admin @ si @RaV2018 Serial 3114  
Permanent link to this record
 

 
Author Dena Bazazian; Dimosthenis Karatzas; Andrew Bagdanov edit   pdf
doi  openurl
  Title Word Spotting in Scene Images based on Character Recognition Type Conference Article
  Year 2018 Publication IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops Abbreviated Journal  
  Volume Issue Pages 1872-1874  
  Keywords  
  Abstract In this paper we address the problem of unconstrained Word Spotting in scene images. We train a Fully Convolutional Network to produce heatmaps of all the character classes. Then, we employ the Text Proposals approach and, via a rectangle classifier, detect the most likely rectangle for each query word based on the character attribute maps. We evaluate the proposed method on ICDAR2015 and show that it is capable of identifying and recognizing query words in natural scene images.  
  Address Salt Lake City; USA; June 2018  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPRW  
  Notes DAG; 600.129; 600.121 Approved no  
  Call Number (up) BKB2018a Serial 3179  
Permanent link to this record
 

 
Author Patrick Brandao; O. Zisimopoulos; E. Mazomenos; G. Ciutib; Jorge Bernal; M. Visentini-Scarzanell; A. Menciassi; P. Dario; A. Koulaouzidis; A. Arezzo; D.J. Hawkes; D. Stoyanov edit   pdf
url  doi
openurl 
  Title Towards a computed-aided diagnosis system in colonoscopy: Automatic polyp segmentation using convolution neural networks Type Journal
  Year 2018 Publication Journal of Medical Robotics Research Abbreviated Journal JMRR  
  Volume 3 Issue 2 Pages  
  Keywords convolutional neural networks; colonoscopy; computer aided diagnosis  
  Abstract Early diagnosis is essential for the successful treatment of bowel cancers including colorectal cancer (CRC) and capsule endoscopic imaging with robotic actuation can be a valuable diagnostic tool when combined with automated image analysis. We present a deep learning rooted detection and segmentation framework for recognizing lesions in colonoscopy and capsule endoscopy images. We restructure established convolution architectures, such as VGG and ResNets, by converting them into fully-connected convolution networks (FCNs), ne-tune them and study their capabilities for polyp segmentation and detection. We additionally use Shape-from-Shading (SfS) to recover depth and provide a richer representation of the tissue's structure in colonoscopy images. Depth is
incorporated into our network models as an additional input channel to the RGB information and we demonstrate that the resulting network yields improved performance. Our networks are tested on publicly available datasets and the most accurate segmentation model achieved a mean segmentation IU of 47.78% and 56.95% on the ETIS-Larib and CVC-Colon datasets, respectively. For polyp
detection, the top performing models we propose surpass the current state of the art with detection recalls superior to 90% for all datasets tested. To our knowledge, we present the rst work to use FCNs for polyp segmentation in addition to proposing a novel combination of SfS and RGB that boosts performance.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MV; no menciona Approved no  
  Call Number (up) BZM2018 Serial 2976  
Permanent link to this record
 

 
Author Dimosthenis Karatzas; Lluis Gomez; Marçal Rusiñol; Anguelos Nicolaou edit   pdf
url  openurl
  Title The Robust Reading Competition Annotation and Evaluation Platform Type Conference Article
  Year 2018 Publication 13th IAPR International Workshop on Document Analysis Systems Abbreviated Journal  
  Volume Issue Pages 61-66  
  Keywords  
  Abstract The ICDAR Robust Reading Competition (RRC), initiated in 2003 and reestablished in 2011, has become the defacto evaluation standard for the international community. Concurrent with its second incarnation in 2011, a continuous
effort started to develop an online framework to facilitate the hosting and management of competitions. This short paper briefly outlines the Robust Reading Competition Annotation and Evaluation Platform, the backbone of the
Robust Reading Competition, comprising a collection of tools and processes that aim to simplify the management and annotation of data, and to provide online and offline performance evaluation and analysis services.
 
  Address Viena; Austria; April 2018  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference DAS  
  Notes DAG; 600.084; 600.121 Approved no  
  Call Number (up) KGR2018 Serial 3103  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: