Mohamed Ali Souibgui, & Y.Kessentini. (2022). DE-GAN: A Conditional Generative Adversarial Network for Document Enhancement. TPAMI - IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(3), 1180–1191.
Abstract: Documents often exhibit various forms of degradation, which make it hard to be read and substantially deteriorate the performance of an OCR system. In this paper, we propose an effective end-to-end framework named Document Enhancement Generative Adversarial Networks (DE-GAN) that uses the conditional GANs (cGANs) to restore severely degraded document images. To the best of our knowledge, this practice has not been studied within the context of generative adversarial deep networks. We demonstrate that, in different tasks (document clean up, binarization, deblurring and watermark removal), DE-GAN can produce an enhanced version of the degraded document with a high quality. In addition, our approach provides consistent improvements compared to state-of-the-art methods over the widely used DIBCO 2013, DIBCO 2017 and H-DIBCO 2018 datasets, proving its ability to restore a degraded document image to its ideal condition. The obtained results on a wide variety of degradation reveal the flexibility of the proposed model to be exploited in other document enhancement problems.
|
Yainuvis Socarras. (2011). Image segmentation for improving pedestrian detection (Vol. 167). Master's thesis, , .
|
Anders Skaarup Johansen, Kamal Nasrollahi, Sergio Escalera, & Thomas B. Moeslund. (2023). Who Cares about the Weather? Inferring Weather Conditions for Weather-Aware Object Detection in Thermal Images. AS - Applied Sciences, 13(18).
Abstract: Deployments of real-world object detection systems often experience a degradation in performance over time due to concept drift. Systems that leverage thermal cameras are especially susceptible because the respective thermal signatures of objects and their surroundings are highly sensitive to environmental changes. In this study, two types of weather-aware latent conditioning methods are investigated. The proposed method aims to guide two object detectors, (YOLOv5 and Deformable DETR) to become weather-aware. This is achieved by leveraging an auxiliary branch that predicts weather-related information while conditioning intermediate layers of the object detector. While the conditioning methods proposed do not directly improve the accuracy of baseline detectors, it can be observed that conditioned networks manage to extract a weather-related signal from the thermal images, thus resulting in a decreased miss rate at the cost of increased false positives. The extracted signal appears noisy and is thus challenging to regress accurately. This is most likely a result of the qualitative nature of the thermal sensor; thus, further work is needed to identify an ideal method for optimizing the conditioning branch, as well as to further improve the accuracy of the system.
Keywords: thermal; object detection; concept drift; conditioning; weather recognition
|
Yipeng Sun, Zihan Ni, Chee-Kheng Chng, Yuliang Liu, Canjie Luo, Chun Chet Ng, et al. (2019). ICDAR 2019 Competition on Large-Scale Street View Text with Partial Labeling – RRC-LSVT. In 15th International Conference on Document Analysis and Recognition (pp. 1557–1562).
Abstract: Robust text reading from street view images provides valuable information for various applications. Performance improvement of existing methods in such a challenging scenario heavily relies on the amount of fully annotated training data, which is costly and in-efficient to obtain. To scale up the amount of training data while keeping the labeling procedure cost-effective, this competition introduces a new challenge on Large-scale Street View Text with Partial Labeling (LSVT), providing 50, 000 and 400, 000 images in full and weak annotations, respectively. This competition aims to explore the abilities of state-of-the-art methods to detect and recognize text instances from large-scale street view images, closing the gap between research benchmarks and real applications. During the competition period, a total of 41 teams participated in the two proposed tasks with 132 valid submissions, ie, text detection and end-to-end text spotting. This paper includes dataset descriptions, task definitions, evaluation protocols and results summaries of the ICDAR 2019-LSVT challenge.
|
Albin Soutif, Marc Masana, Joost Van de Weijer, & Bartlomiej Twardowski. (2021). On the importance of cross-task features for class-incremental learning. In Theory and Foundation of continual learning workshop of ICML.
Abstract: In class-incremental learning, an agent with limited resources needs to learn a sequence of classification tasks, forming an ever growing classification problem, with the constraint of not being able to access data from previous tasks. The main difference with task-incremental learning, where a task-ID is available at inference time, is that the learner also needs to perform crosstask discrimination, i.e. distinguish between classes that have not been seen together. Approaches to tackle this problem are numerous and mostly make use of an external memory (buffer) of non-negligible size. In this paper, we ablate the learning of crosstask features and study its influence on the performance of basic replay strategies used for class-IL. We also define a new forgetting measure for class-incremental learning, and see that forgetting is not the principal cause of low performance. Our experimental results show that future algorithms for class-incremental learning should not only prevent forgetting, but also aim to improve the quality of the cross-task features. This is especially important when the number of classes per task is small.
|
Daniel Sanchez, Meysam Madadi, Marc Oliu, & Sergio Escalera. (2019). Multi-task human analysis in still images: 2D/3D pose, depth map, and multi-part segmentation. In 14th IEEE International Conference on Automatic Face and Gesture Recognition.
Abstract: While many individual tasks in the domain of human analysis have recently received an accuracy boost from deep learning approaches, multi-task learning has mostly been ignored due to a lack of data. New synthetic datasets are being released, filling this gap with synthetic generated data. In this work, we analyze four related human analysis tasks in still images in a multi-task scenario by leveraging such datasets. Specifically, we study the correlation of 2D/3D pose estimation, body part segmentation and full-body depth estimation. These tasks are learned via the well-known Stacked Hourglass module such that each of the task-specific streams shares information with the others. The main goal is to analyze how training together these four related tasks can benefit each individual task for a better generalization. Results on the newly released SURREAL dataset show that all four tasks benefit from the multi-task approach, but with different combinations of tasks: while combining all four tasks improves 2D pose estimation the most, 2D pose improves neither 3D pose nor full-body depth estimation. On the other hand 2D parts segmentation can benefit from 2D pose but not from 3D pose. In all cases, as expected, the maximum improvement is achieved on those human body parts that show more variability in terms of spatial distribution, appearance and shape, e.g. wrists and ankles.
|
David Sanchez-Mendoza, David Masip, & Agata Lapedriza. (2015). Emotion recognition from mid-level features. PRL - Pattern Recognition Letters, 67(Part 1), 66–74.
Abstract: In this paper we present a study on the use of Action Units as mid-level features for automatically recognizing basic and subtle emotions. We propose a representation model based on mid-level facial muscular movement features. We encode these movements dynamically using the Facial Action Coding System, and propose to use these intermediate features based on Action Units (AUs) to classify emotions. AUs activations are detected fusing a set of spatiotemporal geometric and appearance features. The algorithm is validated in two applications: (i) the recognition of 7 basic emotions using the publicly available Cohn-Kanade database, and (ii) the inference of subtle emotional cues in the Newscast database. In this second scenario, we consider emotions that are perceived cumulatively in longer periods of time. In particular, we Automatically classify whether video shoots from public News TV channels refer to Good or Bad news. To deal with the different video lengths we propose a Histogram of Action Units and compute it using a sliding window strategy on the frame sequences. Our approach achieves accuracies close to human perception.
Keywords: Facial expression; Emotion recognition; Action units; Computer vision
|
D. Smith. (1999). Solving the mean string problem for 2D shapes.
|
Aleksandr Setkov, Fabio Martinez Carillo, Michele Gouiffes, Christian Jacquemin, Maria Vanrell, & Ramon Baldrich. (2015). DAcImPro: A Novel Database of Acquired Image Projections and Its Application to Object Recognition. In Advances in Visual Computing. Proceedings of 11th International Symposium, ISVC 2015 Part II (Vol. 9475, pp. 463–473). LNCS. Springer International Publishing.
Abstract: Projector-camera systems are designed to improve the projection quality by comparing original images with their captured projections, which is usually complicated due to high photometric and geometric variations. Many research works address this problem using their own test data which makes it extremely difficult to compare different proposals. This paper has two main contributions. Firstly, we introduce a new database of acquired image projections (DAcImPro) that, covering photometric and geometric conditions and providing data for ground-truth computation, can serve to evaluate different algorithms in projector-camera systems. Secondly, a new object recognition scenario from acquired projections is presented, which could be of a great interest in such domains, as home video projections and public presentations. We show that the task is more challenging than the classical recognition problem and thus requires additional pre-processing, such as color compensation or projection area selection.
Keywords: Projector-camera systems; Feature descriptors; Object recognition
|
Xavier Soria, Yachuan Li, Mohammad Rouhani, & Angel Sappa. (2023). Tiny and Efficient Model for the Edge Detection Generalization. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops.
Abstract: Most high-level computer vision tasks rely on low-level image operations as their initial processes. Operations such as edge detection, image enhancement, and super-resolution, provide the foundations for higher level image analysis. In this work we address the edge detection considering three main objectives: simplicity, efficiency, and generalization since current state-of-the-art (SOTA) edge detection models are increased in complexity for better accuracy. To achieve this, we present Tiny and Efficient Edge Detector (TEED), a light convolutional neural network with only 58K parameters, less than 0:2% of the state-of-the-art models. Training on the BIPED dataset takes less than 30 minutes, with each epoch requiring less than 5 minutes. Our proposed model is easy to train and it quickly converges within very first few epochs, while the predicted edge-maps are crisp and of high quality. Additionally, we propose a new dataset to test the generalization of edge detection, which comprises samples from popular images used in edge detection and image segmentation. The source code is available in https://github.com/xavysp/TEED.
|
Joan Serrat, Felipe Lumbreras, & Idoia Ruiz. (2018). Learning to measure for preshipment garment sizing. MEASURE - Measurement, 130, 327–339.
Abstract: Clothing is still manually manufactured for the most part nowadays, resulting in discrepancies between nominal and real dimensions, and potentially ill-fitting garments. Hence, it is common in the apparel industry to manually perform measures at preshipment time. We present an automatic method to obtain such measures from a single image of a garment that speeds up this task. It is generic and extensible in the sense that it does not depend explicitly on the garment shape or type. Instead, it learns through a probabilistic graphical model to identify the different contour parts. Subsequently, a set of Lasso regressors, one per desired measure, can predict the actual values of the measures. We present results on a dataset of 130 images of jackets and 98 of pants, of varying sizes and styles, obtaining 1.17 and 1.22 cm of mean absolute error, respectively.
Keywords: Apparel; Computer vision; Structured prediction; Regression
|
Hans Stadthagen-Gonzalez, Luis Lopez, M. Carmen Parafita, & C. Alejandro Parraga. (2018). Using two-alternative forced choice tasks and Thurstone law of comparative judgments for code-switching research. In Linguistic Approaches to Bilingualism (pp. 67–97).
Abstract: This article argues that 2-alternative forced choice tasks and Thurstone’s law of comparative judgments (Thurstone, 1927) are well suited to investigate code-switching competence by means of acceptability judgments. We compare this method with commonly used Likert scale judgments and find that the 2-alternative forced choice task provides granular details that remain invisible in a Likert scale experiment. In order to compare and contrast both methods, we examined the syntactic phenomenon usually referred to as the Adjacency Condition (AC) (apud Stowell, 1981), which imposes a condition of adjacency between verb and object. Our interest in the AC comes from the fact that it is a subtle feature of English grammar which is absent in Spanish, and this provides an excellent springboard to create minimal code-switched pairs that allow us to formulate a clear research question that can be tested using both methods.
Keywords: two-alternative forced choice and Thurstone's law; acceptability judgment; code-switching
|
Joan Serrat, Felipe Lumbreras, & Antonio Lopez. (2013). Cost estimation of custom hoses from STL files and CAD drawings. COMPUTIND - Computers in Industry, 64(3), 299–309.
Abstract: We present a method for the cost estimation of custom hoses from CAD models. They can come in two formats, which are easy to generate: a STL file or the image of a CAD drawing showing several orthogonal projections. The challenges in either cases are, first, to obtain from them a high level 3D description of the shape, and second, to learn a regression function for the prediction of the manufacturing time, based on geometric features of the reconstructed shape. The chosen description is the 3D line along the medial axis of the tube and the diameter of the circular sections along it. In order to extract it from STL files, we have adapted RANSAC, a robust parametric fitting algorithm. As for CAD drawing images, we propose a new technique for 3D reconstruction from data entered on any number of orthogonal projections. The regression function is a Gaussian process, which does not constrain the function to adopt any specific form and is governed by just two parameters. We assess the accuracy of the manufacturing time estimation by k-fold cross validation on 171 STL file models for which the time is provided by an expert. The results show the feasibility of the method, whereby the relative error for 80% of the testing samples is below 15%.
Keywords: On-line quotation; STL format; Regression; Gaussian process
|
Damian Sojka, Yuyang Liu, Dipam Goswami, Sebastian Cygert, Bartłomiej Twardowski, & Joost van de Weijer. (2023). Technical Report for ICCV 2023 Visual Continual Learning Challenge: Continuous Test-time Adaptation for Semantic Segmentation.
Abstract: The goal of the challenge is to develop a test-time adaptation (TTA) method, which could adapt the model to gradually changing domains in video sequences for semantic segmentation task. It is based on a synthetic driving video dataset – SHIFT. The source model is trained on images taken during daytime in clear weather. Domain changes at test-time are mainly caused by varying weather conditions and times of day. The TTA methods are evaluated in each image sequence (video) separately, meaning the model is reset to the source model state before the next sequence. Images come one by one and a prediction has to be made at the arrival of each frame. Each sequence is composed of 401 images and starts with the source domain, then gradually drifts to a different one (changing weather or time of day) until the middle of the sequence. In the second half of the sequence, the domain gradually shifts back to the source one. Ground truth data is available only for the validation split of the SHIFT dataset, in which there are only six sequences that start and end with the source domain. We conduct an analysis specifically on those sequences. Ground truth data for test split, on which the developed TTA methods are evaluated for leader board ranking, are not publicly available.
The proposed solution secured a 3rd place in a challenge and received an innovation award. Contrary to the solutions that scored better, we did not use any external pretrained models or specialized data augmentations, to keep the solutions as general as possible. We have focused on analyzing the distributional shift and developing a method that could adapt to changing data dynamics and generalize across different scenarios.
|
Joan Serrat, Felipe Lumbreras, Francisco Blanco, Manuel Valiente, & Montserrat Lopez-Mesas. (2017). myStone: A system for automatic kidney stone classification. ESA - Expert Systems with Applications, 89, 41–51.
Abstract: Kidney stone formation is a common disease and the incidence rate is constantly increasing worldwide. It has been shown that the classification of kidney stones can lead to an important reduction of the recurrence rate. The classification of kidney stones by human experts on the basis of certain visual color and texture features is one of the most employed techniques. However, the knowledge of how to analyze kidney stones is not widespread, and the experts learn only after being trained on a large number of samples of the different classes. In this paper we describe a new device specifically designed for capturing images of expelled kidney stones, and a method to learn and apply the experts knowledge with regard to their classification. We show that with off the shelf components, a carefully selected set of features and a state of the art classifier it is possible to automate this difficult task to a good degree. We report results on a collection of 454 kidney stones, achieving an overall accuracy of 63% for a set of eight classes covering almost all of the kidney stones taxonomy. Moreover, for more than 80% of samples the real class is the first or the second most probable class according to the system, being then the patient recommendations for the two top classes similar. This is the first attempt towards the automatic visual classification of kidney stones, and based on the current results we foresee better accuracies with the increase of the dataset size.
Keywords: Kidney stone; Optical device; Computer vision; Image classification
|