|   | 
Details
   web
Records
Author Carles Sanchez; Oriol Ramos Terrades; Patricia Marquez; Enric Marti; Jaume Rocarias; Debora Gil
Title Evaluación automática de prácticas en Moodle para el aprendizaje autónomo en Ingenierías Type Miscellaneous
Year 2014 Publication 8th International Congress on University Teaching and Innovation Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address Tarragona; juliol 2014
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CIDUI
Notes IAM; 600.075;DAG Approved no
Call Number (down) Admin @ si @ SRM2014 Serial 2458
Permanent link to this record
 

 
Author Maria Salamo; Inmaculada Rodriguez; Maite Lopez; Anna Puig; Simone Balocco; Mariona Taule
Title Recurso docente para la atención de la diversidad en el aula mediante la predicción de notas Type Journal
Year 2016 Publication ReVision Abbreviated Journal
Volume 9 Issue 1 Pages
Keywords Aprendizaje automatico; Sistema de prediccion de notas; Herramienta docente
Abstract Desde la implantación del Espacio Europeo de Educación Superior (EEES) en los diferentes grados, se ha puesto de manifiesto la necesidad de utilizar diversos mecanismos que permitan tratar la diversidad en el aula, evaluando automáticamente y proporcionando una retroalimentación rápida tanto al alumnado como al profesorado sobre la evolución de los alumnos en una asignatura. En este artículo se presenta la evaluación de la exactitud en las predicciones de GRADEFORESEER, un recurso docente para la predicción de notas basado en técnicas de aprendizaje automático que permite evaluar la evolución del alumnado y estimar su nota final al terminar el curso. Este recurso se ha complementado con una interfaz de usuario para el profesorado que puede ser usada en diferentes plataformas software (sistemas operativos) y en cualquier asignatura de un grado en la que se utilice evaluación continuada. Además de la descripción del recurso, este artículo presenta los resultados obtenidos al aplicar el sistema de predicción en cuatro asignaturas de disciplinas distintas: Programación I (PI), Diseño de Software (DSW) del grado de Ingeniería Informática, Tecnologías de la Información y la Comunicación (TIC) del grado de Lingüística y la asignatura Fundamentos de Tecnología (FDT) del grado de Información y Documentación, todas ellas impartidas en la Universidad de Barcelona.

La capacidad predictiva se ha evaluado de forma binaria (aprueba o no) y según un criterio de rango (suspenso, aprobado, notable o sobresaliente), obteniendo mejores predicciones en los resultados evaluados de forma binaria.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MILAB; Approved no
Call Number (down) Admin @ si @ SRL2016 Serial 2820
Permanent link to this record
 

 
Author E. Serradell; Adriana Romero; R. Leta; Carlo Gatta; Francesc Moreno-Noguer
Title Simultaneous Correspondence and Non-Rigid 3D Reconstruction of the Coronary Tree from Single X-Ray Images Type Conference Article
Year 2011 Publication 13th IEEE International Conference on Computer Vision Abbreviated Journal
Volume Issue Pages 850-857
Keywords
Abstract
Address Barcelona
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICCV
Notes MILAB Approved no
Call Number (down) Admin @ si @ SRL2011 Serial 1803
Permanent link to this record
 

 
Author Emanuel Sanchez Aimar; Petia Radeva; Mariella Dimiccoli
Title Social Relation Recognition in Egocentric Photostreams Type Conference Article
Year 2019 Publication 26th International Conference on Image Processing Abbreviated Journal
Volume Issue Pages 3227-3231
Keywords
Abstract This paper proposes an approach to automatically categorize the social interactions of a user wearing a photo-camera (2fpm), by relying solely on what the camera is seeing. The problem is challenging due to the overwhelming complexity of social life and the extreme intra-class variability of social interactions captured under unconstrained conditions. We adopt the formalization proposed in Bugental's social theory, that groups human relations into five social domains with related categories. Our method is a new deep learning architecture that exploits the hierarchical structure of the label space and relies on a set of social attributes estimated at frame level to provide a semantic representation of social interactions. Experimental results on the new EgoSocialRelation dataset demonstrate the effectiveness of our proposal.
Address Taipei; Taiwan; September 2019
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICIP
Notes MILAB; no menciona Approved no
Call Number (down) Admin @ si @ SRD2019 Serial 3370
Permanent link to this record
 

 
Author Md. Mostafa Kamal Sarker; Hatem A. Rashwan; Farhan Akram; Vivek Kumar Singh; Syeda Furruka Banu; Forhad U H Chowdhury; Kabir Ahmed Choudhury; Sylvie Chambon; Petia Radeva; Domenec Puig; Mohamed Abdel-Nasser
Title SLSNet: Skin lesion segmentation using a lightweight generative adversarial network Type Journal Article
Year 2021 Publication Expert Systems With Applications Abbreviated Journal ESWA
Volume 183 Issue Pages 115433
Keywords
Abstract The determination of precise skin lesion boundaries in dermoscopic images using automated methods faces many challenges, most importantly, the presence of hair, inconspicuous lesion edges and low contrast in dermoscopic images, and variability in the color, texture and shapes of skin lesions. Existing deep learning-based skin lesion segmentation algorithms are expensive in terms of computational time and memory. Consequently, running such segmentation algorithms requires a powerful GPU and high bandwidth memory, which are not available in dermoscopy devices. Thus, this article aims to achieve precise skin lesion segmentation with minimum resources: a lightweight, efficient generative adversarial network (GAN) model called SLSNet, which combines 1-D kernel factorized networks, position and channel attention, and multiscale aggregation mechanisms with a GAN model. The 1-D kernel factorized network reduces the computational cost of 2D filtering. The position and channel attention modules enhance the discriminative ability between the lesion and non-lesion feature representations in spatial and channel dimensions, respectively. A multiscale block is also used to aggregate the coarse-to-fine features of input skin images and reduce the effect of the artifacts. SLSNet is evaluated on two publicly available datasets: ISBI 2017 and the ISIC 2018. Although SLSNet has only 2.35 million parameters, the experimental results demonstrate that it achieves segmentation results on a par with the state-of-the-art skin lesion segmentation methods with an accuracy of 97.61%, and Dice and Jaccard similarity coefficients of 90.63% and 81.98%, respectively. SLSNet can run at more than 110 frames per second (FPS) in a single GTX1080Ti GPU, which is faster than well-known deep learning-based image segmentation models, such as FCN. Therefore, SLSNet can be used for practical dermoscopic applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MILAB; no proj Approved no
Call Number (down) Admin @ si @ SRA2021 Serial 3633
Permanent link to this record
 

 
Author Md. Mostafa Kamal Sarker; Hatem A. Rashwan; Farhan Akram; Estefania Talavera; Syeda Furruka Banu; Petia Radeva; Domenec Puig
Title Recognizing Food Places in Egocentric Photo-Streams Using Multi-Scale Atrous Convolutional Networks and Self-Attention Mechanism Type Journal Article
Year 2019 Publication IEEE Access Abbreviated Journal ACCESS
Volume 7 Issue Pages 39069-39082
Keywords
Abstract Wearable sensors (e.g., lifelogging cameras) represent very useful tools to monitor people's daily habits and lifestyle. Wearable cameras are able to continuously capture different moments of the day of their wearers, their environment, and interactions with objects, people, and places reflecting their personal lifestyle. The food places where people eat, drink, and buy food, such as restaurants, bars, and supermarkets, can directly affect their daily dietary intake and behavior. Consequently, developing an automated monitoring system based on analyzing a person's food habits from daily recorded egocentric photo-streams of the food places can provide valuable means for people to improve their eating habits. This can be done by generating a detailed report of the time spent in specific food places by classifying the captured food place images to different groups. In this paper, we propose a self-attention mechanism with multi-scale atrous convolutional networks to generate discriminative features from image streams to recognize a predetermined set of food place categories. We apply our model on an egocentric food place dataset called “EgoFoodPlaces” that comprises of 43 392 images captured by 16 individuals using a lifelogging camera. The proposed model achieved an overall classification accuracy of 80% on the “EgoFoodPlaces” dataset, respectively, outperforming the baseline methods, such as VGG16, ResNet50, and InceptionV3.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MILAB; no menciona Approved no
Call Number (down) Admin @ si @ SRA2019 Serial 3296
Permanent link to this record
 

 
Author Md. Mostafa Kamal Sarker; Hatem A. Rashwan; Farhan Akram; Syeda Furruka Banu; Adel Saleh; Vivek Kumar Singh; Forhad U. H. Chowdhury; Saddam Abdulwahab; Santiago Romani; Petia Radeva; Domenec Puig
Title SLSDeep: Skin Lesion Segmentation Based on Dilated Residual and Pyramid Pooling Networks. Type Conference Article
Year 2018 Publication 21st International Conference on Medical Image Computing & Computer Assisted Intervention Abbreviated Journal
Volume 2 Issue Pages 21-29
Keywords
Abstract Skin lesion segmentation (SLS) in dermoscopic images is a crucial task for automated diagnosis of melanoma. In this paper, we present a robust deep learning SLS model, so-called SLSDeep, which is represented as an encoder-decoder network. The encoder network is constructed by dilated residual layers, in turn, a pyramid pooling network followed by three convolution layers is used for the decoder. Unlike the traditional methods employing a cross-entropy loss, we investigated a loss function by combining both Negative Log Likelihood (NLL) and End Point Error (EPE) to accurately segment the melanoma regions with sharp boundaries. The robustness of the proposed model was evaluated on two public databases: ISBI 2016 and 2017 for skin lesion analysis towards melanoma detection challenge. The proposed model outperforms the state-of-the-art methods in terms of segmentation accuracy. Moreover, it is capable to segment more than 100 images of size 384x384 per second on a recent GPU.
Address Granada; Espanya; September 2018
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference MICCAI
Notes MILAB; no proj Approved no
Call Number (down) Admin @ si @ SRA2018 Serial 3112
Permanent link to this record
 

 
Author Santiago Segui; Oriol Pujol; Jordi Vitria
Title Learning to count with deep object features Type Conference Article
Year 2015 Publication Deep Vision: Deep Learning in Computer Vision, CVPR 2015 Workshop Abbreviated Journal
Volume Issue Pages 90-96
Keywords
Abstract Learning to count is a learning strategy that has been recently proposed in the literature for dealing with problems where estimating the number of object instances in a scene is the final objective. In this framework, the task of learning to detect and localize individual object instances is seen as a harder task that can be evaded by casting the problem as that of computing a regression value from hand-crafted image features. In this paper we explore the features that are learned when training a counting convolutional neural
network in order to understand their underlying representation.
To this end we define a counting problem for MNIST data and show that the internal representation of the network is able to classify digits in spite of the fact that no direct supervision was provided for them during training.
We also present preliminary results about a deep network that is able to count the number of pedestrians in a scene.
Address Boston; USA; June 2015
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPRW
Notes MILAB; HuPBA; OR;MV Approved no
Call Number (down) Admin @ si @ SPV2015 Serial 2636
Permanent link to this record
 

 
Author Albert Ali Salah; E. Pauwels; R. Tavenard; Theo Gevers
Title T-Patterns Revisited: Mining for Temporal Patterns in Sensor Data Type Journal Article
Year 2010 Publication Sensors Abbreviated Journal SENS
Volume 10 Issue 8 Pages 7496-7513
Keywords sensor networks; temporal pattern extraction; T-patterns; Lempel-Ziv; Gaussian mixture model; MERL motion data
Abstract The trend to use large amounts of simple sensors as opposed to a few complex sensors to monitor places and systems creates a need for temporal pattern mining algorithms to work on such data. The methods that try to discover re-usable and interpretable patterns in temporal event data have several shortcomings. We contrast several recent approaches to the problem, and extend the T-Pattern algorithm, which was previously applied for detection of sequential patterns in behavioural sciences. The temporal complexity of the T-pattern approach is prohibitive in the scenarios we consider. We remedy this with a statistical model to obtain a fast and robust algorithm to find patterns in temporal data. We test our algorithm on a recent database collected with passive infrared sensors with millions of events.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ALTRES;ISE Approved no
Call Number (down) Admin @ si @ SPT2010 Serial 1845
Permanent link to this record
 

 
Author Xavier Soria; Gonzalo Pomboza-Junez; Angel Sappa
Title LDC: Lightweight Dense CNN for Edge Detection Type Journal Article
Year 2022 Publication IEEE Access Abbreviated Journal ACCESS
Volume 10 Issue Pages 68281-68290
Keywords
Abstract This paper presents a Lightweight Dense Convolutional (LDC) neural network for edge detection. The proposed model is an adaptation of two state-of-the-art approaches, but it requires less than 4% of parameters in comparison with these approaches. The proposed architecture generates thin edge maps and reaches the highest score (i.e., ODS) when compared with lightweight models (models with less than 1 million parameters), and reaches a similar performance when compare with heavy architectures (models with about 35 million parameters). Both quantitative and qualitative results and comparisons with state-of-the-art models, using different edge detection datasets, are provided. The proposed LDC does not use pre-trained weights and requires straightforward hyper-parameter settings. The source code is released at https://github.com/xavysp/LDC
Address 27 June 2022
Corporate Author Thesis
Publisher IEEE Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MSIAU; MACO; 600.160; 600.167 Approved no
Call Number (down) Admin @ si @ SPS2022 Serial 3751
Permanent link to this record
 

 
Author Hans Stadthagen-Gonzalez; M. Carmen Parafita; C. Alejandro Parraga; Markus F. Damian
Title Testing alternative theoretical accounts of code-switching: Insights from comparative judgments of adjective noun order Type Journal Article
Year 2019 Publication International journal of bilingualism: interdisciplinary studies of multilingual behaviour Abbreviated Journal IJB
Volume 23 Issue 1 Pages 200-220
Keywords
Abstract Objectives:
Spanish and English contrast in adjective–noun word order: for example, brown dress (English) vs. vestido marrón (‘dress brown’, Spanish). According to the Matrix Language model (MLF) word order in code-switched sentences must be compatible with the word order of the matrix language, but working within the minimalist program (MP), Cantone and MacSwan arrived at the descriptive generalization that the position of the noun phrase relative to the adjective is determined by the adjective’s language. Our aim is to evaluate the predictions derived from these two models regarding adjective–noun order in Spanish–English code-switched sentences.
Methodology:
We contrasted the predictions from both models regarding the acceptability of code-switched sentences with different adjective–noun orders that were compatible with the MP, the MLF, both, or none. Acceptability was assessed in Experiment 1 with a 5-point Likert and in Experiment 2 with a 2-Alternative Forced Choice (2AFC) task.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes NEUROBIT; no menciona Approved no
Call Number (down) Admin @ si @ SPP2019 Serial 3242
Permanent link to this record
 

 
Author I. Sorodoc; S. Pezzelle; A. Herbelot; Mariella Dimiccoli; R. Bernardi
Title Learning quantification from images: A structured neural architecture Type Journal Article
Year 2018 Publication Natural Language Engineering Abbreviated Journal NLE
Volume 24 Issue 3 Pages 363-392
Keywords
Abstract Major advances have recently been made in merging language and vision representations. Most tasks considered so far have confined themselves to the processing of objects and lexicalised relations amongst objects (content words). We know, however, that humans (even pre-school children) can abstract over raw multimodal data to perform certain types of higher level reasoning, expressed in natural language by function words. A case in point is given by their ability to learn quantifiers, i.e. expressions like few, some and all. From formal semantics and cognitive linguistics, we know that quantifiers are relations over sets which, as a simplification, we can see as proportions. For instance, in most fish are red, most encodes the proportion of fish which are red fish. In this paper, we study how well current neural network strategies model such relations. We propose a task where, given an image and a query expressed by an object–property pair, the system must return a quantifier expressing which proportions of the queried object have the queried property. Our contributions are twofold. First, we show that the best performance on this task involves coupling state-of-the-art attention mechanisms with a network architecture mirroring the logical structure assigned to quantifiers by classic linguistic formalisation. Second, we introduce a new balanced dataset of image scenarios associated with quantification queries, which we hope will foster further research in this area.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MILAB; no menciona Approved no
Call Number (down) Admin @ si @ SPH2018 Serial 3021
Permanent link to this record
 

 
Author Marc Serra; Olivier Penacchio; Robert Benavente; Maria Vanrell; Dimitris Samaras
Title The Photometry of Intrinsic Images Type Conference Article
Year 2014 Publication 27th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal
Volume Issue Pages 1494-1501
Keywords
Abstract Intrinsic characterization of scenes is often the best way to overcome the illumination variability artifacts that complicate most computer vision problems, from 3D reconstruction to object or material recognition. This paper examines the deficiency of existing intrinsic image models to accurately account for the effects of illuminant color and sensor characteristics in the estimation of intrinsic images and presents a generic framework which incorporates insights from color constancy research to the intrinsic image decomposition problem. The proposed mathematical formulation includes information about the color of the illuminant and the effects of the camera sensors, both of which modify the observed color of the reflectance of the objects in the scene during the acquisition process. By modeling these effects, we get a “truly intrinsic” reflectance image, which we call absolute reflectance, which is invariant to changes of illuminant or camera sensors. This model allows us to represent a wide range of intrinsic image decompositions depending on the specific assumptions on the geometric properties of the scene configuration and the spectral properties of the light source and the acquisition system, thus unifying previous models in a single general framework. We demonstrate that even partial information about sensors improves significantly the estimated reflectance images, thus making our method applicable for a wide range of sensors. We validate our general intrinsic image framework experimentally with both synthetic data and natural images.
Address Columbus; Ohio; USA; June 2014
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPR
Notes CIC; 600.052; 600.051; 600.074 Approved no
Call Number (down) Admin @ si @ SPB2014 Serial 2506
Permanent link to this record
 

 
Author Marc Serra; Olivier Penacchio; Robert Benavente; Maria Vanrell
Title Names and Shades of Color for Intrinsic Image Estimation Type Conference Article
Year 2012 Publication 25th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal
Volume Issue Pages 278-285
Keywords
Abstract In the last years, intrinsic image decomposition has gained attention. Most of the state-of-the-art methods are based on the assumption that reflectance changes come along with strong image edges. Recently, user intervention in the recovery problem has proved to be a remarkable source of improvement. In this paper, we propose a novel approach that aims to overcome the shortcomings of pure edge-based methods by introducing strong surface descriptors, such as the color-name descriptor which introduces high-level considerations resembling top-down intervention. We also use a second surface descriptor, termed color-shade, which allows us to include physical considerations derived from the image formation model capturing gradual color surface variations. Both color cues are combined by means of a Markov Random Field. The method is quantitatively tested on the MIT ground truth dataset using different error metrics, achieving state-of-the-art performance.
Address Providence, Rhode Island
Corporate Author Thesis
Publisher IEEE Xplore Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1063-6919 ISBN 978-1-4673-1226-4 Medium
Area Expedition Conference CVPR
Notes CIC Approved no
Call Number (down) Admin @ si @ SPB2012 Serial 2026
Permanent link to this record
 

 
Author Mohamed Ali Souibgui
Title Document Image Enhancement and Recognition in Low Resource Scenarios: Application to Ciphers and Handwritten Text Type Book Whole
Year 2022 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract In this thesis, we propose different contributions with the goal of enhancing and recognizing historical handwritten document images, especially the ones with rare scripts, such as cipher documents.
In the first part, some effective end-to-end models for Document Image Enhancement (DIE) using deep learning models were presented. First, Generative Adversarial Networks (cGAN) for different tasks (document clean-up, binarization, deblurring, and watermark removal) were explored. Next, we further improve the results by recovering the degraded document images into a clean and readable form by integrating a text recognizer into the cGAN model to promote the generated document image to be more readable. Afterward, we present a new encoder-decoder architecture based on vision transformers to enhance both machine-printed and handwritten document images, in an end-to-end fashion.
The second part of the thesis addresses Handwritten Text Recognition (HTR) in low resource scenarios, i.e. when only few labeled training data is available. We propose novel methods for recognizing ciphers with rare scripts. First, a few-shot object detection based method was proposed. Then, we incorporate a progressive learning strategy that automatically assignspseudo-labels to a set of unlabeled data to reduce the human labor of annotating few pages while maintaining the good performance of the model. Secondly, a data generation technique based on Bayesian Program Learning (BPL) is proposed to overcome the lack of data in such rare scripts. Thirdly, we propose a Text-Degradation Invariant Auto Encoder (Text-DIAE). This latter self-supervised model is designed to tackle two tasks, text recognition and document image enhancement. The proposed model does not exhibit limitations of previous state-of-the-art methods based on contrastive losses, while at the same time, it requires substantially fewer data samples to converge.
In the third part of the thesis, we analyze, from the user perspective, the usage of HTR systems in low resource scenarios. This contrasts with the usual research on HTR, which often focuses on technical aspects only and rarely devotes efforts on implementing software tools for scholars in Humanities.
Address
Corporate Author Thesis Ph.D. thesis
Publisher IMPRIMA Place of Publication Editor Alicia Fornes;Yousri Kessentini
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-124793-8-6 Medium
Area Expedition Conference
Notes DAG Approved no
Call Number (down) Admin @ si @ Sou2022 Serial 3757
Permanent link to this record