|   | 
Details
   web
Records
Author Santi Puch; Irina Sanchez; Aura Hernandez-Sabate; Gemma Piella; Vesna Prckovska
Title Global Planar Convolutions for Improved Context Aggregation in Brain Tumor Segmentation Type Conference Article
Year 2018 Publication International MICCAI Brainlesion Workshop Abbreviated Journal
Volume 11384 Issue Pages 393-405
Keywords Brain tumors; 3D fully-convolutional CNN; Magnetic resonance imaging; Global planar convolution
Abstract In this work, we introduce the Global Planar Convolution module as a building-block for fully-convolutional networks that aggregates global information and, therefore, enhances the context perception capabilities of segmentation networks in the context of brain tumor segmentation. We implement two baseline architectures (3D UNet and a residual version of 3D UNet, ResUNet) and present a novel architecture based on these two architectures, ContextNet, that includes the proposed Global Planar Convolution module. We show that the addition of such module eliminates the need of building networks with several representation levels, which tend to be over-parametrized and to showcase slow rates of convergence. Furthermore, we provide a visual demonstration of the behavior of GPC modules via visualization of intermediate representations. We finally participate in the 2018 edition of the BraTS challenge with our best performing models, that are based on ContextNet, and report the evaluation scores on the validation and the test sets of the challenge.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference MICCAIW
Notes ADAS; 600.118 Approved no
Call Number (up) Admin @ si @ PSH2018 Serial 3251
Permanent link to this record
 

 
Author Mark Philip Philipsen; Jacob Velling Dueholm; Anders Jorgensen; Sergio Escalera; Thomas B. Moeslund
Title Organ Segmentation in Poultry Viscera Using RGB-D Type Journal Article
Year 2018 Publication Sensors Abbreviated Journal SENS
Volume 18 Issue 1 Pages 117
Keywords semantic segmentation; RGB-D; random forest; conditional random field; 2D; 3D; CNN
Abstract We present a pattern recognition framework for semantic segmentation of visual structures, that is, multi-class labelling at pixel level, and apply it to the task of segmenting organs in the eviscerated viscera from slaughtered poultry in RGB-D images. This is a step towards replacing the current strenuous manual inspection at poultry processing plants. Features are extracted from feature maps such as activation maps from a convolutional neural network (CNN). A random forest classifier assigns class probabilities, which are further refined by utilizing context in a conditional random field. The presented method is compatible with both 2D and 3D features, which allows us to explore the value of adding 3D and CNN-derived features. The dataset consists of 604 RGB-D images showing 151 unique sets of eviscerated viscera from four different perspectives. A mean Jaccard index of 78.11% is achieved across the four classes of organs by using features derived from 2D, 3D and a CNN, compared to 74.28% using only basic 2D image features.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HUPBA; no proj Approved no
Call Number (up) Admin @ si @ PVJ2018 Serial 3072
Permanent link to this record
 

 
Author Mohammed Al Rawi; Dimosthenis Karatzas
Title On the Labeling Correctness in Computer Vision Datasets Type Conference Article
Year 2018 Publication Proceedings of the Workshop on Interactive Adaptive Learning, co-located with European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Image datasets have heavily been used to build computer vision systems.
These datasets are either manually or automatically labeled, which is a
problem as both labeling methods are prone to errors. To investigate this problem, we use a majority voting ensemble that combines the results from several Convolutional Neural Networks (CNNs). Majority voting ensembles not only enhance the overall performance, but can also be used to estimate the confidence level of each sample. We also examined Softmax as another form to estimate posterior probability. We have designed various experiments with a range of different ensembles built from one or different, or temporal/snapshot CNNs, which have been trained multiple times stochastically. We analyzed CIFAR10, CIFAR100, EMNIST, and SVHN datasets and we found quite a few incorrect
labels, both in the training and testing sets. We also present detailed confidence analysis on these datasets and we found that the ensemble is better than the Softmax when used estimate the per-sample confidence. This work thus proposes an approach that can be used to scrutinize and verify the labeling of computer vision datasets, which can later be applied to weakly/semi-supervised learning. We propose a measure, based on the Odds-Ratio, to quantify how many of these incorrectly classified labels are actually incorrectly labeled and how many of these are confusing. The proposed methods are easily scalable to larger datasets, like ImageNet, LSUN and SUN, as each CNN instance is trained for 60 epochs; or even faster, by implementing a temporal (snapshot) ensemble.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ECML-PKDDW
Notes DAG; 600.121; 600.129 Approved no
Call Number (up) Admin @ si @ RaK2018 Serial 3144
Permanent link to this record
 

 
Author Pau Rodriguez; Miguel Angel Bautista; Sergio Escalera; Jordi Gonzalez
Title Beyond Oneshot Encoding: lower dimensional target embedding Type Journal Article
Year 2018 Publication Image and Vision Computing Abbreviated Journal IMAVIS
Volume 75 Issue Pages 21-31
Keywords Error correcting output codes; Output embeddings; Deep learning; Computer vision
Abstract Target encoding plays a central role when learning Convolutional Neural Networks. In this realm, one-hot encoding is the most prevalent strategy due to its simplicity. However, this so widespread encoding schema assumes a flat label space, thus ignoring rich relationships existing among labels that can be exploited during training. In large-scale datasets, data does not span the full label space, but instead lies in a low-dimensional output manifold. Following this observation, we embed the targets into a low-dimensional space, drastically improving convergence speed while preserving accuracy. Our contribution is two fold: (i) We show that random projections of the label space are a valid tool to find such lower dimensional embeddings, boosting dramatically convergence rates at zero computational cost; and (ii) we propose a normalized eigenrepresentation of the class manifold that encodes the targets with minimal information loss, improving the accuracy of random projections encoding while enjoying the same convergence rates. Experiments on CIFAR-100, CUB200-2011, Imagenet, and MIT Places demonstrate that the proposed approach drastically improves convergence speed while reaching very competitive accuracy rates.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ISE; HuPBA; 600.098; 602.133; 602.121; 600.119 Approved no
Call Number (up) Admin @ si @ RBE2018 Serial 3120
Permanent link to this record
 

 
Author Marçal Rusiñol; J. Chazalon; Katerine Diaz
Title Augmented Songbook: an Augmented Reality Educational Application for Raising Music Awareness Type Journal Article
Year 2018 Publication Multimedia Tools and Applications Abbreviated Journal MTAP
Volume 77 Issue 11 Pages 13773-13798
Keywords Augmented reality; Document image matching; Educational applications
Abstract This paper presents the development of an Augmented Reality mobile application which aims at sensibilizing young children to abstract concepts of music. Such concepts are, for instance, the musical notation or the idea of rhythm. Recent studies in Augmented Reality for education suggest that such technologies have multiple benefits for students, including younger ones. As mobile document image acquisition and processing gains maturity on mobile platforms, we explore how it is possible to build a markerless and real-time application to augment the physical documents with didactic animations and interactive virtual content. Given a standard image processing pipeline, we compare the performance of different local descriptors at two key stages of the process. Results suggest alternatives to the SIFT local descriptors, regarding result quality and computational efficiency, both for document model identification and perspective transform estimation. All experiments are performed on an original and public dataset we introduce here.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes DAG; ADAS; 600.084; 600.121; 600.118; 600.129 Approved no
Call Number (up) Admin @ si @ RCD2018 Serial 2996
Permanent link to this record
 

 
Author Pau Riba; Andreas Fischer; Josep Llados; Alicia Fornes
Title Learning Graph Distances with Message Passing Neural Networks Type Conference Article
Year 2018 Publication 24th International Conference on Pattern Recognition Abbreviated Journal
Volume Issue Pages 2239-2244
Keywords ★Best Paper Award★
Abstract Graph representations have been widely used in pattern recognition thanks to their powerful representation formalism and rich theoretical background. A number of error-tolerant graph matching algorithms such as graph edit distance have been proposed for computing a distance between two labelled graphs. However, they typically suffer from a high
computational complexity, which makes it difficult to apply
these matching algorithms in a real scenario. In this paper, we propose an efficient graph distance based on the emerging field of geometric deep learning. Our method employs a message passing neural network to capture the graph structure and learns a metric with a siamese network approach. The performance of the proposed graph distance is validated in two application cases, graph classification and graph retrieval of handwritten words, and shows a promising performance when compared with
(approximate) graph edit distance benchmarks.
Address Beijing; China; August 2018
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICPR
Notes DAG; 600.097; 603.057; 601.302; 600.121 Approved no
Call Number (up) Admin @ si @ RFL2018 Serial 3168
Permanent link to this record
 

 
Author Pau Rodriguez; Josep M. Gonfaus; Guillem Cucurull; Xavier Roca; Jordi Gonzalez
Title Attend and Rectify: A Gated Attention Mechanism for Fine-Grained Recovery Type Conference Article
Year 2018 Publication 15th European Conference on Computer Vision Abbreviated Journal
Volume 11212 Issue Pages 357-372
Keywords Deep Learning; Convolutional Neural Networks; Attention
Abstract We propose a novel attention mechanism to enhance Convolutional Neural Networks for fine-grained recognition. It learns to attend to lower-level feature activations without requiring part annotations and uses these activations to update and rectify the output likelihood distribution. In contrast to other approaches, the proposed mechanism is modular, architecture-independent and efficient both in terms of parameters and computation required. Experiments show that networks augmented with our approach systematically improve their classification accuracy and become more robust to clutter. As a result, Wide Residual Networks augmented with our proposal surpasses the state of the art classification accuracies in CIFAR-10, the Adience gender recognition task, Stanford dogs, and UEC Food-100.
Address Munich; September 2018
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ECCV
Notes ISE; 600.098; 602.121; 600.119 Approved no
Call Number (up) Admin @ si @ RGC2018 Serial 3139
Permanent link to this record
 

 
Author Razieh Rastgoo; Kourosh Kiani; Sergio Escalera
Title Multi-Modal Deep Hand Sign Language Recognition in Still Images Using Restricted Boltzmann Machine Type Journal Article
Year 2018 Publication Entropy Abbreviated Journal ENTROPY
Volume 20 Issue 11 Pages 809
Keywords hand sign language; deep learning; restricted Boltzmann machine (RBM); multi-modal; profoundly deaf; noisy image
Abstract In this paper, a deep learning approach, Restricted Boltzmann Machine (RBM), is used to perform automatic hand sign language recognition from visual data. We evaluate how RBM, as a deep generative model, is capable of generating the distribution of the input data for an enhanced recognition of unseen data. Two modalities, RGB and Depth, are considered in the model input in three forms: original image, cropped image, and noisy cropped image. Five crops of the input image are used and the hand of these cropped images are detected using Convolutional Neural Network (CNN). After that, three types of the detected hand images are generated for each modality and input to RBMs. The outputs of the RBMs for two modalities are fused in another RBM in order to recognize the output sign label of the input image. The proposed multi-modal model is trained on all and part of the American alphabet and digits of four publicly available datasets. We also evaluate the robustness of the proposal against noise. Experimental results show that the proposed multi-modal model, using crops and the RBM fusing methodology, achieves state-of-the-art results on Massey University Gesture Dataset 2012, American Sign Language (ASL). and Fingerspelling Dataset from the University of Surrey’s Center for Vision, Speech and Signal Processing, NYU, and ASL Fingerspelling A datasets.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HUPBA; no proj Approved no
Call Number (up) Admin @ si @ RKE2018 Serial 3198
Permanent link to this record
 

 
Author Huamin Ren; Nattiya Kanhabua; Andreas Mogelmose; Weifeng Liu; Kaustubh Kulkarni; Sergio Escalera; Xavier Baro; Thomas B. Moeslund
Title Back-dropout Transfer Learning for Action Recognition Type Journal Article
Year 2018 Publication IET Computer Vision Abbreviated Journal IETCV
Volume 12 Issue 4 Pages 484-491
Keywords Learning (artificial intelligence); Pattern Recognition
Abstract Transfer learning aims at adapting a model learned from source dataset to target dataset. It is a beneficial approach especially when annotating on the target dataset is expensive or infeasible. Transfer learning has demonstrated its powerful learning capabilities in various vision tasks. Despite transfer learning being a promising approach, it is still an open question how to adapt the model learned from the source dataset to the target dataset. One big challenge is to prevent the impact of category bias on classification performance. Dataset bias exists when two images from the same category, but from different datasets, are not classified as the same. To address this problem, a transfer learning algorithm has been proposed, called negative back-dropout transfer learning (NB-TL), which utilizes images that have been misclassified and further performs back-dropout strategy on them to penalize errors. Experimental results demonstrate the effectiveness of the proposed algorithm. In particular, the authors evaluate the performance of the proposed NB-TL algorithm on UCF 101 action recognition dataset, achieving 88.9% recognition rate.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HUPBA; no proj Approved no
Call Number (up) Admin @ si @ RKM2018 Serial 3071
Permanent link to this record
 

 
Author Muhammad Anwer Rao; Fahad Shahbaz Khan; Joost Van de Weijer; Matthieu Molinier; Jorma Laaksonen
Title Binary patterns encoded convolutional neural networks for texture recognition and remote sensing scene classification Type Journal Article
Year 2018 Publication ISPRS Journal of Photogrammetry and Remote Sensing Abbreviated Journal ISPRS J
Volume 138 Issue Pages 74-85
Keywords Remote sensing; Deep learning; Scene classification; Local Binary Patterns; Texture analysis
Abstract Designing discriminative powerful texture features robust to realistic imaging conditions is a challenging computer vision problem with many applications, including material recognition and analysis of satellite or aerial imagery. In the past, most texture description approaches were based on dense orderless statistical distribution of local features. However, most recent approaches to texture recognition and remote sensing scene classification are based on Convolutional Neural Networks (CNNs). The de facto practice when learning these CNN models is to use RGB patches as input with training performed on large amounts of labeled data (ImageNet). In this paper, we show that Local Binary Patterns (LBP) encoded CNN models, codenamed TEX-Nets, trained using mapped coded images with explicit LBP based texture information provide complementary information to the standard RGB deep models. Additionally, two deep architectures, namely early and late fusion, are investigated to combine the texture and color information. To the best of our knowledge, we are the first to investigate Binary Patterns encoded CNNs and different deep network fusion architectures for texture recognition and remote sensing scene classification. We perform comprehensive experiments on four texture recognition datasets and four remote sensing scene classification benchmarks: UC-Merced with 21 scene categories, WHU-RS19 with 19 scene classes, RSSCN7 with 7 categories and the recently introduced large scale aerial image dataset (AID) with 30 aerial scene types. We demonstrate that TEX-Nets provide complementary information to standard RGB deep model of the same network architecture. Our late fusion TEX-Net architecture always improves the overall performance compared to the standard RGB network on both recognition problems. Furthermore, our final combination leads to consistent improvement over the state-of-the-art for remote sensing scene
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes LAMP; 600.109; 600.106; 600.120 Approved no
Call Number (up) Admin @ si @ RKW2018 Serial 3158
Permanent link to this record
 

 
Author Gemma Rotger; Felipe Lumbreras; Francesc Moreno-Noguer; Antonio Agudo
Title 2D-to-3D Facial Expression Transfer Type Conference Article
Year 2018 Publication 24th International Conference on Pattern Recognition Abbreviated Journal
Volume Issue Pages 2008 - 2013
Keywords
Abstract Automatically changing the expression and physical features of a face from an input image is a topic that has been traditionally tackled in a 2D domain. In this paper, we bring this problem to 3D and propose a framework that given an
input RGB video of a human face under a neutral expression, initially computes his/her 3D shape and then performs a transfer to a new and potentially non-observed expression. For this purpose, we parameterize the rest shape –obtained from standard factorization approaches over the input video– using a triangular
mesh which is further clustered into larger macro-segments. The expression transfer problem is then posed as a direct mapping between this shape and a source shape, such as the blend shapes of an off-the-shelf 3D dataset of human facial expressions. The mapping is resolved to be geometrically consistent between 3D models by requiring points in specific regions to map on semantic
equivalent regions. We validate the approach on several synthetic and real examples of input faces that largely differ from the source shapes, yielding very realistic expression transfers even in cases with topology changes, such as a synthetic video sequence of a single-eyed cyclops.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICPR
Notes MSIAU; 600.086; 600.130; 600.118 Approved no
Call Number (up) Admin @ si @ RLM2018 Serial 3232
Permanent link to this record
 

 
Author Esmitt Ramirez; Carles Sanchez; Agnes Borras; Marta Diez-Ferrer; Antoni Rosell; Debora Gil
Title BronchoX: bronchoscopy exploration software for biopsy intervention planning Type Journal
Year 2018 Publication Healthcare Technology Letters Abbreviated Journal HTL
Volume 5 Issue 5 Pages 177–182
Keywords
Abstract Virtual bronchoscopy (VB) is a non-invasive exploration tool for intervention planning and navigation of possible pulmonary lesions (PLs). A VB software involves the location of a PL and the calculation of a route, starting from the trachea, to reach it. The selection of a VB software might be a complex process, and there is no consensus in the community of medical software developers in which is the best-suited system to use or framework to choose. The authors present Bronchoscopy Exploration (BronchoX), a VB software to plan biopsy interventions that generate physician-readable instructions to reach the PLs. The authors’ solution is open source, multiplatform, and extensible for future functionalities, designed by their multidisciplinary research and development group. BronchoX is a compound of different algorithms for segmentation, visualisation, and navigation of the respiratory tract. Performed results are a focus on the test the effectiveness of their proposal as an exploration software, also to measure its accuracy as a guiding system to reach PLs. Then, 40 different virtual planning paths were created to guide physicians until distal bronchioles. These results provide a functional software for BronchoX and demonstrate how following simple instructions is possible to reach distal lesions from the trachea.
Address
Corporate Author rank (SJR) Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM; 600.096; 600.075; 601.323; 601.337; 600.145 Approved no
Call Number (up) Admin @ si @ RSB2018a Serial 3132
Permanent link to this record
 

 
Author Esmitt Ramirez; Carles Sanchez; Agnes Borras; Marta Diez-Ferrer; Antoni Rosell; Debora Gil
Title Image-Based Bronchial Anatomy Codification for Biopsy Guiding in Video Bronchoscopy Type Conference Article
Year 2018 Publication OR 2.0 Context-Aware Operating Theaters, Computer Assisted Robotic Endoscopy, Clinical Image-Based Procedures, and Skin Image Analysis Abbreviated Journal
Volume 11041 Issue Pages
Keywords Biopsy guiding; Bronchoscopy; Lung biopsy; Intervention guiding; Airway codification
Abstract Bronchoscopy examinations allow biopsy of pulmonary nodules with minimum risk for the patient. Even for experienced bronchoscopists, it is difficult to guide the bronchoscope to most distal lesions and obtain an accurate diagnosis. This paper presents an image-based codification of the bronchial anatomy for bronchoscopy biopsy guiding. The 3D anatomy of each patient is codified as a binary tree with nodes representing bronchial levels and edges labeled using their position on images projecting the 3D anatomy from a set of branching points. The paths from the root to leaves provide a codification of navigation routes with spatially consistent labels according to the anatomy observes in video bronchoscopy explorations. We evaluate our labeling approach as a guiding system in terms of the number of bronchial levels correctly codified, also in the number of labels-based instructions correctly supplied, using generalized mixed models and computer-generated data. Results obtained for three independent observers prove the consistency and reproducibility of our guiding system. We trust that our codification based on viewer’s projection might be used as a foundation for the navigation process in Virtual Bronchoscopy systems.
Address Granada; September 2018
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference MICCAIW
Notes IAM; 600.096; 600.075; 601.323; 600.145 Approved no
Call Number (up) Admin @ si @ RSB2018b Serial 3137
Permanent link to this record
 

 
Author Sangheeta Roy; Palaiahnakote Shivakumara; Namita Jain; Vijeta Khare; Anjan Dutta; Umapada Pal; Tong Lu
Title Rough-Fuzzy based Scene Categorization for Text Detection and Recognition in Video Type Journal Article
Year 2018 Publication Pattern Recognition Abbreviated Journal PR
Volume 80 Issue Pages 64-82
Keywords Rough set; Fuzzy set; Video categorization; Scene image classification; Video text detection; Video text recognition
Abstract Scene image or video understanding is a challenging task especially when number of video types increases drastically with high variations in background and foreground. This paper proposes a new method for categorizing scene videos into different classes, namely, Animation, Outlet, Sports, e-Learning, Medical, Weather, Defense, Economics, Animal Planet and Technology, for the performance improvement of text detection and recognition, which is an effective approach for scene image or video understanding. For this purpose, at first, we present a new combination of rough and fuzzy concept to study irregular shapes of edge components in input scene videos, which helps to classify edge components into several groups. Next, the proposed method explores gradient direction information of each pixel in each edge component group to extract stroke based features by dividing each group into several intra and inter planes. We further extract correlation and covariance features to encode semantic features located inside planes or between planes. Features of intra and inter planes of groups are then concatenated to get a feature matrix. Finally, the feature matrix is verified with temporal frames and fed to a neural network for categorization. Experimental results show that the proposed method outperforms the existing state-of-the-art methods, at the same time, the performances of text detection and recognition methods are also improved significantly due to categorization.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes DAG; 600.097; 600.121 Approved no
Call Number (up) Admin @ si @ RSJ2018 Serial 3096
Permanent link to this record
 

 
Author Marçal Rusiñol; Lluis Gomez
Title Avances en clasificación de imágenes en los últimos diez años. Perspectivas y limitaciones en el ámbito de archivos fotográficos históricos Type Journal
Year 2018 Publication Revista anual de la Asociación de Archiveros de Castilla y León Abbreviated Journal
Volume 21 Issue Pages 161-174
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes DAG; 600.121; 600.129 Approved no
Call Number (up) Admin @ si @ RuG2018 Serial 3239
Permanent link to this record