|   | 
Details
   web
Records
Author Ferran Diego; Daniel Ponsa; Joan Serrat; Antonio Lopez
Title Video Alignment for Difference-spotting Type Miscellaneous
Year 2008 Publication Proceedings of the ECCV workshop on Multi–camera and Multi–modal Sensor Fusion Algorithms and Applications (M2SFA2 2008), Marseille (France) Abbreviated Journal
Volume Issue Pages
Keywords video alignment
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ADAS Approved no
Call Number (up) ADAS @ adas @ DPS2008 Serial 1079
Permanent link to this record
 

 
Author Ferran Diego; Daniel Ponsa; Joan Serrat; Antonio Lopez
Title Video alignment for automotive applications Type Miscellaneous
Year 2009 Publication BMVA one–day technical meeting on vision for automotive applications Abbreviated Journal
Volume Issue Pages
Keywords video alignment
Abstract
Address London, UK
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ADAS Approved no
Call Number (up) ADAS @ adas @ DPS2009 Serial 1271
Permanent link to this record
 

 
Author Ferran Diego; Daniel Ponsa; Joan Serrat; Antonio Lopez
Title Vehicle geolocalization based on video synchronization Type Conference Article
Year 2010 Publication 13th Annual International Conference on Intelligent Transportation Systems Abbreviated Journal
Volume Issue Pages 1511–1516
Keywords video alignment
Abstract TC8.6
This paper proposes a novel method for estimating the geospatial localization of a vehicle. I uses as input a georeferenced video sequence recorded by a forward-facing camera attached to the windscreen. The core of the proposed method is an on-line video synchronization which finds out the corresponding frame in the georeferenced video sequence to the one recorded at each time by the camera on a second drive through the same track. Once found the corresponding frame in the georeferenced video sequence, we transfer its geospatial information of this frame. The key advantages of this method are: 1) the increase of the update rate and the geospatial accuracy with regard to a standard low-cost GPS and 2) the ability to localize a vehicle even when a GPS is not available or is not reliable enough, like in certain urban areas. Experimental results for an urban environments are presented, showing an average of relative accuracy of 1.5 meters.
Address Madeira Island (Portugal)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2153-0009 ISBN 978-1-4244-7657-2 Medium
Area Expedition Conference ITSC
Notes ADAS Approved no
Call Number (up) ADAS @ adas @ DPS2010 Serial 1423
Permanent link to this record
 

 
Author Ferran Diego; Daniel Ponsa; Joan Serrat; Antonio Lopez
Title Video Alignment for Change Detection Type Journal Article
Year 2011 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP
Volume 20 Issue 7 Pages 1858-1869
Keywords video alignment
Abstract In this work, we address the problem of aligning two video sequences. Such alignment refers to synchronization, i.e., the establishment of temporal correspondence between frames of the first and second video, followed by spatial registration of all the temporally corresponding frames. Video synchronization and alignment have been attempted before, but most often in the relatively simple cases of fixed or rigidly attached cameras and simultaneous acquisition. In addition, restrictive assumptions have been applied, including linear time correspondence or the knowledge of the complete trajectories of corresponding scene points; to some extent, these assumptions limit the practical applicability of any solutions developed. We intend to solve the more general problem of aligning video sequences recorded by independently moving cameras that follow similar trajectories, based only on the fusion of image intensity and GPS information. The novelty of our approach is to pose the synchronization as a MAP inference problem on a Bayesian network including the observations from these two sensor types, which have been proved complementary. Alignment results are presented in the context of videos recorded from vehicles driving along the same track at different times, for different road types. In addition, we explore two applications of the proposed video alignment method, both based on change detection between aligned videos. One is the detection of vehicles, which could be of use in ADAS. The other is online difference spotting videos of surveillance rounds.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ADAS; IF Approved no
Call Number (up) DPS 2011; ADAS @ adas @ dps2011 Serial 1705
Permanent link to this record