|   | 
Details
   web
Records
Author (down) Hugo Bertiche; Meysam Madadi; Sergio Escalera
Title PBNS: Physically Based Neural Simulation for Unsupervised Garment Pose Space Deformation Type Conference Article
Year 2021 Publication 14th ACM Siggraph Conference and exhibition on Computer Graphics and Interactive Techniques in Asia Abbreviated Journal
Volume Issue Pages
Keywords
Abstract We present a methodology to automatically obtain Pose Space Deformation (PSD) basis for rigged garments through deep learning. Classical approaches rely on Physically Based Simulations (PBS) to animate clothes. These are general solutions that, given a sufficiently fine-grained discretization of space and time, can achieve highly realistic results. However, they are computationally expensive and any scene modification prompts the need of re-simulation. Linear Blend Skinning (LBS) with PSD offers a lightweight alternative to PBS, though, it needs huge volumes of data to learn proper PSD. We propose using deep learning, formulated as an implicit PBS, to unsupervisedly learn realistic cloth Pose Space Deformations in a constrained scenario: dressed humans. Furthermore, we show it is possible to train these models in an amount of time comparable to a PBS of a few sequences. To the best of our knowledge, we are the first to propose a neural simulator for cloth.
While deep-based approaches in the domain are becoming a trend, these are data-hungry models. Moreover, authors often propose complex formulations to better learn wrinkles from PBS data. Supervised learning leads to physically inconsistent predictions that require collision solving to be used. Also, dependency on PBS data limits the scalability of these solutions, while their formulation hinders its applicability and compatibility. By proposing an unsupervised methodology to learn PSD for LBS models (3D animation standard), we overcome both of these drawbacks. Results obtained show cloth-consistency in the animated garments and meaningful pose-dependant folds and wrinkles. Our solution is extremely efficient, handles multiple layers of cloth, allows unsupervised outfit resizing and can be easily applied to any custom 3D avatar.
Address Virtual; December 2020
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference SIGGRAPH
Notes HUPBA; no proj Approved no
Call Number Admin @ si @ BME2021b Serial 3641
Permanent link to this record
 

 
Author (down) Hugo Bertiche; Meysam Madadi; Sergio Escalera
Title PBNS: Physically Based Neural Simulation for Unsupervised Garment Pose Space Deformation Type Journal Article
Year 2021 Publication ACM Transactions on Graphics Abbreviated Journal
Volume 40 Issue 6 Pages 1-14
Keywords
Abstract We present a methodology to automatically obtain Pose Space Deformation (PSD) basis for rigged garments through deep learning. Classical approaches rely on Physically Based Simulations (PBS) to animate clothes. These are general solutions that, given a sufficiently fine-grained discretization of space and time, can achieve highly realistic results. However, they are computationally expensive and any scene modification prompts the need of re-simulation. Linear Blend Skinning (LBS) with PSD offers a lightweight alternative to PBS, though, it needs huge volumes of data to learn proper PSD. We propose using deep learning, formulated as an implicit PBS, to unsupervisedly learn realistic cloth Pose Space Deformations in a constrained scenario: dressed humans. Furthermore, we show it is possible to train these models in an amount of time comparable to a PBS of a few sequences. To the best of our knowledge, we are the first to propose a neural simulator for cloth.
While deep-based approaches in the domain are becoming a trend, these are data-hungry models. Moreover, authors often propose complex formulations to better learn wrinkles from PBS data. Supervised learning leads to physically inconsistent predictions that require collision solving to be used. Also, dependency on PBS data limits the scalability of these solutions, while their formulation hinders its applicability and compatibility. By proposing an unsupervised methodology to learn PSD for LBS models (3D animation standard), we overcome both of these drawbacks. Results obtained show cloth-consistency in the animated garments and meaningful pose-dependant folds and wrinkles. Our solution is extremely efficient, handles multiple layers of cloth, allows unsupervised outfit resizing and can be easily applied to any custom 3D avatar.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HUPBA; no proj Approved no
Call Number Admin @ si @ BME2021c Serial 3643
Permanent link to this record
 

 
Author (down) Hugo Bertiche; Meysam Madadi; Emilio Tylson; Sergio Escalera
Title DeePSD: Automatic Deep Skinning And Pose Space Deformation For 3D Garment Animation Type Conference Article
Year 2021 Publication 19th IEEE International Conference on Computer Vision Abbreviated Journal
Volume Issue Pages 5471-5480
Keywords
Abstract We present a novel solution to the garment animation problem through deep learning. Our contribution allows animating any template outfit with arbitrary topology and geometric complexity. Recent works develop models for garment edition, resizing and animation at the same time by leveraging the support body model (encoding garments as body homotopies). This leads to complex engineering solutions that suffer from scalability, applicability and compatibility. By limiting our scope to garment animation only, we are able to propose a simple model that can animate any outfit, independently of its topology, vertex order or connectivity. Our proposed architecture maps outfits to animated 3D models into the standard format for 3D animation (blend weights and blend shapes matrices), automatically providing of compatibility with any graphics engine. We also propose a methodology to complement supervised learning with an unsupervised physically based learning that implicitly solves collisions and enhances cloth quality.
Address Virtual; October 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICCV
Notes HUPBA; no menciona Approved no
Call Number Admin @ si @ BMT2021 Serial 3606
Permanent link to this record
 

 
Author (down) Henry Velesaca; Patricia Suarez; Raul Mira; Angel Sappa
Title Computer Vision based Food Grain Classification: a Comprehensive Survey Type Journal Article
Year 2021 Publication Computers and Electronics in Agriculture Abbreviated Journal CEA
Volume 187 Issue Pages 106287
Keywords
Abstract This manuscript presents a comprehensive survey on recent computer vision based food grain classification techniques. It includes state-of-the-art approaches intended for different grain varieties. The approaches proposed in the literature are analyzed according to the processing stages considered in the classification pipeline, making it easier to identify common techniques and comparisons. Additionally, the type of images considered by each approach (i.e., images from the: visible, infrared, multispectral, hyperspectral bands) together with the strategy used to generate ground truth data (i.e., real and synthetic images) are reviewed. Finally, conclusions highlighting future needs and challenges are presented.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MSIAU; 600.130; 600.122 Approved no
Call Number Admin @ si @ VSM2021 Serial 3576
Permanent link to this record
 

 
Author (down) Henry Velesaca; Patricia Suarez; Dario Carpio; Angel Sappa
Title Synthesized Image Datasets: Towards an Annotation-Free Instance Segmentation Strategy Type Conference Article
Year 2021 Publication 16th International Symposium on Visual Computing Abbreviated Journal
Volume 13017 Issue Pages 131–143
Keywords
Abstract This paper presents a complete pipeline to perform deep learning-based instance segmentation of different types of grains (e.g., corn, sunflower, soybeans, lentils, chickpeas, mote, and beans). The proposed approach consists of using synthesized image datasets for the training process, which are easily generated according to the category of the instance to be segmented. The synthesized imaging process allows generating a large set of well-annotated grain samples with high variability—as large and high as the user requires. Instance segmentation is performed through a popular deep learning based approach, the Mask R-CNN architecture, but any learning-based instance segmentation approach can be considered. Results obtained by the proposed pipeline show that the strategy of using synthesized image datasets for training instance segmentation helps to avoid the time-consuming image annotation stage, as well as to achieve higher intersection over union and average precision performances. Results obtained with different varieties of grains are shown, as well as comparisons with manually annotated images, showing both the simplicity of the process and the improvements in the performance.
Address Virtual; October 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ISVC
Notes MSIAU Approved no
Call Number Admin @ si @ VSC2021 Serial 3667
Permanent link to this record
 

 
Author (down) Hassan Ahmed Sial
Title Estimating Light Effects from a Single Image: Deep Architectures and Ground-Truth Generation Type Book Whole
Year 2021 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract In this thesis, we explore how to estimate the effects of the light interacting with the scene objects from a single image. To achieve this goal, we focus on recovering intrinsic components like reflectance, shading, or light properties such as color and position using deep architectures. The success of these approaches relies on training on large and diversified image datasets. Therefore, we present several contributions on this such as: (a) a data-augmentation technique; (b) a ground-truth for an existing multi-illuminant dataset; (c) a family of synthetic datasets, SID for Surreal Intrinsic Datasets, with diversified backgrounds and coherent light conditions; and (d) a practical pipeline to create hybrid ground-truths to overcome the complexity of acquiring realistic light conditions in a massive way. In parallel with the creation of datasets, we trained different flexible encoder-decoder deep architectures incorporating physical constraints from the image formation models.

In the last part of the thesis, we apply all the previous experience to two different problems. Firstly, we create a large hybrid Doc3DShade dataset with real shading and synthetic reflectance under complex illumination conditions, that is used to train a two-stage architecture that improves the character recognition task in complex lighting conditions of unwrapped documents. Secondly, we tackle the problem of single image scene relighting by extending both, the SID dataset to present stronger shading and shadows effects, and the deep architectures to use intrinsic components to estimate new relit images.
Address September 2021
Corporate Author Thesis Ph.D. thesis
Publisher IMPRIMA Place of Publication Editor Maria Vanrell;Ramon Baldrich
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-122714-8-5 Medium
Area Expedition Conference
Notes CIC; Approved no
Call Number Admin @ si @ Sia2021 Serial 3607
Permanent link to this record
 

 
Author (down) Hannes Mueller; Andre Groeger; Jonathan Hersh; Andrea Matranga; Joan Serrat
Title Monitoring war destruction from space using machine learning Type Journal Article
Year 2021 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal PNAS
Volume 118 Issue 23 Pages e2025400118
Keywords
Abstract Existing data on building destruction in conflict zones rely on eyewitness reports or manual detection, which makes it generally scarce, incomplete, and potentially biased. This lack of reliable data imposes severe limitations for media reporting, humanitarian relief efforts, human-rights monitoring, reconstruction initiatives, and academic studies of violent conflict. This article introduces an automated method of measuring destruction in high-resolution satellite images using deep-learning techniques combined with label augmentation and spatial and temporal smoothing, which exploit the underlying spatial and temporal structure of destruction. As a proof of concept, we apply this method to the Syrian civil war and reconstruct the evolution of damage in major cities across the country. Our approach allows generating destruction data with unprecedented scope, resolution, and frequency—and makes use of the ever-higher frequency at which satellite imagery becomes available.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ADAS; 600.118 Approved no
Call Number Admin @ si @ MGH2021 Serial 3584
Permanent link to this record
 

 
Author (down) Graham D. Finlayson; Javier Vazquez; Fufu Fang
Title The Discrete Cosine Maximum Ignorance Assumption Type Conference Article
Year 2021 Publication 29th Color and Imaging Conference Abbreviated Journal
Volume Issue Pages 13-18
Keywords
Abstract the performance of colour correction algorithms are dependent on the reflectance sets used. Sometimes, when the testing reflectance set is changed the ranking of colour correction algorithms also changes. To remove dependence on dataset we can
make assumptions about the set of all possible reflectances. In the Maximum Ignorance with Positivity (MIP) assumption we assume that all reflectances with per wavelength values between 0 and 1 are equally likely. A weakness in the MIP is that it fails to take into account the correlation of reflectance functions between
wavelengths (many of the assumed reflectances are, in reality, not possible).
In this paper, we take the view that the maximum ignorance assumption has merit but, hitherto it has been calculated with respect to the wrong coordinate basis. Here, we propose the Discrete Cosine Maximum Ignorance assumption (DCMI), where
all reflectances that have coordinates between max and min bounds in the Discrete Cosine Basis coordinate system are equally likely.
Here, the correlation between wavelengths is encoded and this results in the set of all plausible reflectances ’looking like’ typical reflectances that occur in nature. This said the DCMI model is also a superset of all measured reflectance sets.
Experiments show that, in colour correction, adopting the DCMI results in similar colour correction performance as using a particular reflectance set.
Address Virtual; November 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CIC
Notes CIC Approved no
Call Number FVF2021 Serial 3596
Permanent link to this record
 

 
Author (down) Giuseppe Pezzano; Vicent Ribas Ripoll; Petia Radeva
Title CoLe-CNN: Context-learning convolutional neural network with adaptive loss function for lung nodule segmentation Type Journal Article
Year 2021 Publication Computer Methods and Programs in Biomedicine Abbreviated Journal CMPB
Volume 198 Issue Pages 105792
Keywords
Abstract Background and objective:An accurate segmentation of lung nodules in computed tomography images is a crucial step for the physical characterization of the tumour. Being often completely manually accomplished, nodule segmentation turns to be a tedious and time-consuming procedure and this represents a high obstacle in clinical practice. In this paper, we propose a novel Convolutional Neural Network for nodule segmentation that combines a light and efficient architecture with innovative loss function and segmentation strategy. Methods:In contrast to most of the standard end-to-end architectures for nodule segmentation, our network learns the context of the nodules by producing two masks representing all the background and secondary-important elements in the Computed Tomography scan. The nodule is detected by subtracting the context from the original scan image. Additionally, we introduce an asymmetric loss function that automatically compensates for potential errors in the nodule annotations. We trained and tested our Neural Network on the public LIDC-IDRI database, compared it with the state of the art and run a pseudo-Turing test between four radiologists and the network. Results:The results proved that the behaviour of the algorithm is very near to the human performance and its segmentation masks are almost indistinguishable from the ones made by the radiologists. Our method clearly outperforms the state of the art on CT nodule segmentation in terms of F1 score and IoU of and respectively. Conclusions: The main structure of the network ensures all the properties of the UNet architecture, while the Multi Convolutional Layers give a more accurate pattern recognition. The newly adopted solutions also increase the details on the border of the nodule, even under the noisiest conditions. This method can be applied now for single CT slice nodule segmentation and it represents a starting point for the future development of a fully automatic 3D segmentation software.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MILAB; no proj Approved no
Call Number Admin @ si @ PRR2021 Serial 3530
Permanent link to this record
 

 
Author (down) Giuseppe Pezzano; Oliver Diaz; Vicent Ribas Ripoll; Petia Radeva
Title CoLe-CNN+: Context learning – Convolutional neural network for COVID-19-Ground-Glass-Opacities detection and segmentation Type Journal Article
Year 2021 Publication Computers in Biology and Medicine Abbreviated Journal CBM
Volume 136 Issue Pages 104689
Keywords
Abstract The most common tool for population-wide COVID-19 identification is the Reverse Transcription-Polymerase Chain Reaction test that detects the presence of the virus in the throat (or sputum) in swab samples. This test has a sensitivity between 59% and 71%. However, this test does not provide precise information regarding the extension of the pulmonary infection. Moreover, it has been proven that through the reading of a computed tomography (CT) scan, a clinician can provide a more complete perspective of the severity of the disease. Therefore, we propose a comprehensive system for fully-automated COVID-19 detection and lesion segmentation from CT scans, powered by deep learning strategies to support decision-making process for the diagnosis of COVID-19.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MILAB; no menciona Approved no
Call Number Admin @ si @ PDR2021 Serial 3635
Permanent link to this record
 

 
Author (down) Giovanni Maria Farinella; Petia Radeva; Jose Braz; Kadi Bouatouch
Title Proceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (Volume 4) Type Book Whole
Year 2021 Publication Proceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications. VISIGRAPP 2021 Abbreviated Journal
Volume 4 Issue Pages
Keywords
Abstract This book contains the proceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2021) which was organized and sponsored by the Institute for Systems and Technologies of Information, Control and Communication (INSTICC), endorsed by the International Association for Pattern Recognition (IAPR), and in cooperation with the ACM Special Interest Group on Graphics and Interactive Techniques (SIGGRAPH), the European Association for Computer Graphics (EUROGRAPHICS), the EUROGRAPHICS Portuguese Chapter, the VRVis Center for Virtual Reality and Visualization Forschungs-GmbH, the French Association for Computer Graphics (AFIG), and the Society for Imaging Science and Technology (IS&T). The proceedings here published demonstrate new and innovative solutions and highlight technical problems in each field that are challenging and worthy of being disseminated to the interested research audiences. VISIGRAPP 2021 was organized to promote a discussion forum about the conference’s research topics between researchers, developers, manufacturers and end-users, and to establish guidelines in the development of more advanced solutions. This year VISIGRAPP was, exceptionally, held as a web-based event, due to the COVID-19 pandemic, from 8 – 10 February. We received a high number of paper submissions for this edition of VISIGRAPP, 371 in total, with contributions from 52 countries. This attests to the success and global dimension of VISIGRAPP. To evaluate each submission, we used a hierarchical process of double-blind evaluation where each paper was reviewed by two to six experts from the International Program Committee (IPC). The IPC selected for oral presentation and for publication as full papers 12 papers from GRAPP, 8 from HUCAPP, 11 papers from IVAPP, and 56 papers from VISAPP, which led to a result for the full-paper acceptance ratio of 24% and a high-quality program. Apart from the above full papers, the conference program also features 118 short papers and 67 poster presentations. We hope that these conference proceedings, which are submitted for indexation by Thomson Reuters Conference Proceedings Citation Index, SCOPUS, DBLP, Semantic Scholar, Google Scholar, EI and Microsoft Academic, will help the Computer Vision, Imaging, Visualization, Computer Graphics and Human-Computer Interaction communities to find interesting research work. Moreover, we are proud to inform that the program also includes three plenary keynote lectures, given by internationally distinguished researchers, namely Federico Tombari (Google and Technical University of Munich, Germany), Dieter Schmalstieg (Graz University of Technology, Austria) and Nathalie Henry Riche (Microsoft Research, United States), thus contributing to increase the overall quality of the conference and to provide a deeper understanding of the conference’s interest fields. Furthermore, a short list of the presented papers will be selected to be extended into a forthcoming book of VISIGRAPP Selected Papers to be published by Springer during 2021 in the CCIS series. Moreover, a short list of presented papers will be selected for publication of extended and revised versions in a special issue of the Springer Nature Computer Science journal. All papers presented at this conference will be available at the SCITEPRESS Digital Library. Three awards are delivered at the closing session, to recognize the best conference paper, the best student paper and the best poster for each of the four conferences. There is also an award for best industrial paper to be delivered at the closing session for VISAPP. We would like to express our thanks, first of all, to the authors of the technical papers, whose work and dedication made it possible to put together a program that we believe to be very exciting and of high technical quality. Next, we would like to thank the Area Chairs, all the members of the program committee and auxiliary reviewers, who helped us with their expertise and time. We would also like to thank the invited speakers for their invaluable contribution and for sharing their vision in their talks. Finally, we gratefully acknowledge the professional support of the INSTICC team for all organizational processes, especially given the need to introduce online streaming, forum management, direct messaging facilitation and other web-based activities in order to make it possible for VISIGRAPP 2021 authors to present their work and share ideas with colleagues in spite of the logistic difficulties caused by the current pandemic situation. We wish you all an exciting conference. We hope to meet you again for the next edition of VISIGRAPP, details of which are available at http://www. visigrapp.org
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference VISIGRAPP
Notes MILAB Approved no
Call Number Admin @ si @ FRB2021a Serial 3627
Permanent link to this record
 

 
Author (down) Giovanni Maria Farinella; Petia Radeva; Jose Braz; Kadi Bouatouch
Title Proceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications – (Volume 5) Type Book Whole
Year 2021 Publication Proceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications – VISIGRAPP 2021 Abbreviated Journal
Volume 5 Issue Pages
Keywords
Abstract This book contains the proceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2021) which was organized and sponsored by the Institute for Systems and Technologies of Information, Control and Communication (INSTICC), endorsed by the International Association for Pattern Recognition (IAPR), and in cooperation with the ACM Special Interest Group on Graphics and Interactive Techniques (SIGGRAPH), the European Association for Computer Graphics (EUROGRAPHICS), the EUROGRAPHICS Portuguese Chapter, the VRVis Center for Virtual Reality and Visualization Forschungs-GmbH, the French Association for Computer Graphics (AFIG), and the Society for Imaging Science and Technology (IS&T). The proceedings here published demonstrate new and innovative solutions and highlight technical problems in each field that are challenging and worthy of being disseminated to the interested research audiences. VISIGRAPP 2021 was organized to promote a discussion forum about the conference’s research topics between researchers, developers, manufacturers and end-users, and to establish guidelines in the development of more advanced solutions. This year VISIGRAPP was, exceptionally, held as a web-based event, due to the COVID-19 pandemic, from 8 – 10 February. We received a high number of paper submissions for this edition of VISIGRAPP, 371 in total, with contributions from 52 countries. This attests to the success and global dimension of VISIGRAPP. To evaluate each submission, we used a hierarchical process of double-blind evaluation where each paper was reviewed by two to six experts from the International Program Committee (IPC). The IPC selected for oral presentation and for publication as full papers 12 papers from GRAPP, 8 from HUCAPP, 11 papers from IVAPP, and 56 papers from VISAPP, which led to a result for the full-paper acceptance ratio of 24% and a high-quality program. Apart from the above full papers, the conference program also features 118 short papers and 67 poster presentations. We hope that these conference proceedings, which are submitted for indexation by Thomson Reuters Conference Proceedings Citation Index, SCOPUS, DBLP, Semantic Scholar, Google Scholar, EI and Microsoft Academic, will help the Computer Vision, Imaging, Visualization, Computer Graphics and Human-Computer Interaction communities to find interesting research work. Moreover, we are proud to inform that the program also includes three plenary keynote lectures, given by internationally distinguished researchers, namely Federico Tombari (Google and Technical University of Munich, Germany), Dieter Schmalstieg (Graz University of Technology, Austria) and Nathalie Henry Riche (Microsoft Research, United States), thus contributing to increase the overall quality of the conference and to provide a deeper understanding of the conference’s interest fields. Furthermore, a short list of the presented papers will be selected to be extended into a forthcoming book of VISIGRAPP Selected Papers to be published by Springer during 2021 in the CCIS series. Moreover, a short list of presented papers will be selected for publication of extended and revised versions in a special issue of the Springer Nature Computer Science journal. All papers presented at this conference will be available at the SCITEPRESS Digital Library. Three awards are delivered at the closing session, to recognize the best conference paper, the best student paper and the best poster for each of the four conferences. There is also an award for best industrial paper to be delivered at the closing session for VISAPP. We would like to express our thanks, first of all, to the authors of the technical papers, whose work and dedication made it possible to put together a program that we believe to be very exciting and of high technical quality. Next, we would like to thank the Area Chairs, all the members of the program committee and auxiliary reviewers, who helped us with their expertise and time. We would also like to thank the invited speakers for their invaluable contribution and for sharing their vision in their talks. Finally, we gratefully acknowledge the professional support of the INSTICC team for all organizational processes, especially given the need to introduce online streaming, forum management, direct messaging facilitation and other web-based activities in order to make it possible for VISIGRAPP 2021 authors to present their work and share ideas with colleagues in spite of the logistic difficulties caused by the current pandemic situation. We wish you all an exciting conference. We hope to meet you again for the next edition of VISIGRAPP, details of which are available at http://www. visigrapp.org.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference VISIGRAPP
Notes MILAB Approved no
Call Number Admin @ si @ FRB2021b Serial 3628
Permanent link to this record
 

 
Author (down) Gemma Rotger
Title Lifelike Humans: Detailed Reconstruction of Expressive Human Faces Type Book Whole
Year 2021 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Developing human-like digital characters is a challenging task since humans are used to recognizing our fellows, and find the computed generated characters inadequately humanized. To fulfill the standards of the videogame and digital film productions it is necessary to model and animate these characters the most closely to human beings. However, it is an arduous and expensive task, since many artists and specialists are required to work on a single character. Therefore, to fulfill these requirements we found an interesting option to study the automatic creation of detailed characters through inexpensive setups. In this work, we develop novel techniques to bring detailed characters by combining different aspects that stand out when developing realistic characters, skin detail, facial hairs, expressions, and microexpressions. We examine each of the mentioned areas with the aim of automatically recover each of the parts without user interaction nor training data. We study the problems for their robustness but also for the simplicity of the setup, preferring single-image with uncontrolled illumination and methods that can be easily computed with the commodity of a standard laptop. A detailed face with wrinkles and skin details is vital to develop a realistic character. In this work, we introduce our method to automatically describe facial wrinkles on the image and transfer to the recovered base face. Then we advance to facial hair recovery by resolving a fitting problem with a novel parametrization model. As of last, we develop a mapping function that allows transfer expressions and microexpressions between different meshes, which provides realistic animations to our detailed mesh. We cover all the mentioned points with the focus on key aspects as (i) how to describe skin wrinkles in a simple and straightforward manner, (ii) how to recover 3D from 2D detections, (iii) how to recover and model facial hair from 2D to 3D, (iv) how to transfer expressions between models holding both skin detail and facial hair, (v) how to perform all the described actions without training data nor user interaction. In this work, we present our proposals to solve these aspects with an efficient and simple setup. We validate our work with several datasets both synthetic and real data, prooving remarkable results even in challenging cases as occlusions as glasses, thick beards, and indeed working with different face topologies like single-eyed cyclops.
Address
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor Felipe Lumbreras;Antonio Agudo
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-122714-3-0 Medium
Area Expedition Conference
Notes ADAS Approved no
Call Number Admin @ si @ Rot2021 Serial 3513
Permanent link to this record
 

 
Author (down) Gabriel Villalonga
Title Leveraging Synthetic Data to Create Autonomous Driving Perception Systems Type Book Whole
Year 2021 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Manually annotating images to develop vision models has been a major bottleneck
since computer vision and machine learning started to walk together. This has
been more evident since computer vision falls on the shoulders of data-hungry
deep learning techniques. When addressing on-board perception for autonomous
driving, the curse of data annotation is exacerbated due to the use of additional
sensors such as LiDAR. Therefore, any approach aiming at reducing such a timeconsuming and costly work is of high interest for addressing autonomous driving
and, in fact, for any application requiring some sort of artificial perception. In the
last decade, it has been shown that leveraging from synthetic data is a paradigm
worth to pursue in order to minimizing manual data annotation. The reason is
that the automatic process of generating synthetic data can also produce different
types of associated annotations (e.g. object bounding boxes for synthetic images
and LiDAR pointclouds, pixel/point-wise semantic information, etc.). Directly
using synthetic data for training deep perception models may not be the definitive
solution in all circumstances since it can appear a synth-to-real domain shift. In
this context, this work focuses on leveraging synthetic data to alleviate manual
annotation for three perception tasks related to driving assistance and autonomous
driving. In all cases, we assume the use of deep convolutional neural networks
(CNNs) to develop our perception models.
The first task addresses traffic sign recognition (TSR), a kind of multi-class
classification problem. We assume that the number of sign classes to be recognized
must be suddenly increased without having annotated samples to perform the
corresponding TSR CNN re-training. We show that leveraging synthetic samples of
such new classes and transforming them by a generative adversarial network (GAN)
trained on the known classes (i.e. without using samples from the new classes), it is
possible to re-train the TSR CNN to properly classify all the signs for a ∼ 1/4 ratio of
new/known sign classes. The second task addresses on-board 2D object detection,
focusing on vehicles and pedestrians. In this case, we assume that we receive a set
of images without the annotations required to train an object detector, i.e. without
object bounding boxes. Therefore, our goal is to self-annotate these images so
that they can later be used to train the desired object detector. In order to reach
this goal, we leverage from synthetic data and propose a semi-supervised learning
approach based on the co-training idea. In fact, we use a GAN to reduce the synthto-real domain shift before applying co-training. Our quantitative results show
that co-training and GAN-based image-to-image translation complement each
other up to allow the training of object detectors without manual annotation, and still almost reaching the upper-bound performances of the detectors trained from
human annotations. While in previous tasks we focus on vision-based perception,
the third task we address focuses on LiDAR pointclouds. Our initial goal was to
develop a 3D object detector trained on synthetic LiDAR-style pointclouds. While
for images we may expect synth/real-to-real domain shift due to differences in
their appearance (e.g. when source and target images come from different camera
sensors), we did not expect so for LiDAR pointclouds since these active sensors
factor out appearance and provide sampled shapes. However, in practice, we have
seen that it can be domain shift even among real-world LiDAR pointclouds. Factors
such as the sampling parameters of the LiDARs, the sensor suite configuration onboard the ego-vehicle, and the human annotation of 3D bounding boxes, do induce
a domain shift. We show it through comprehensive experiments with different
publicly available datasets and 3D detectors. This redirected our goal towards the
design of a GAN for pointcloud-to-pointcloud translation, a relatively unexplored
topic.
Finally, it is worth to mention that all the synthetic datasets used for these three
tasks, have been designed and generated in the context of this PhD work and will
be publicly released. Overall, we think this PhD presents several steps forward to
encourage leveraging synthetic data for developing deep perception models in the
field of driving assistance and autonomous driving.
Address February 2021
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor Antonio Lopez;German Ros
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-122714-2-3 Medium
Area Expedition Conference
Notes ADAS; 600.118 Approved no
Call Number Admin @ si @ Vil2021 Serial 3599
Permanent link to this record
 

 
Author (down) Fei Yang; Luis Herranz; Yongmei Cheng; Mikhail Mozerov
Title Slimmable compressive autoencoders for practical neural image compression Type Conference Article
Year 2021 Publication 34th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal
Volume Issue Pages 4996-5005
Keywords
Abstract Neural image compression leverages deep neural networks to outperform traditional image codecs in rate-distortion performance. However, the resulting models are also heavy, computationally demanding and generally optimized for a single rate, limiting their practical use. Focusing on practical image compression, we propose slimmable compressive autoencoders (SlimCAEs), where rate (R) and distortion (D) are jointly optimized for different capacities. Once trained, encoders and decoders can be executed at different capacities, leading to different rates and complexities. We show that a successful implementation of SlimCAEs requires suitable capacity-specific RD tradeoffs. Our experiments show that SlimCAEs are highly flexible models that provide excellent rate-distortion performance, variable rate, and dynamic adjustment of memory, computational cost and latency, thus addressing the main requirements of practical image compression.
Address Virtual; June 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPR
Notes LAMP; 600.120 Approved no
Call Number Admin @ si @ YHC2021 Serial 3569
Permanent link to this record