|   | 
Details
   web
Records
Author (down) Volkmar Frinken; Alicia Fornes; Josep Llados; Jean-Marc Ogier
Title Bidirectional Language Model for Handwriting Recognition Type Conference Article
Year 2012 Publication Structural, Syntactic, and Statistical Pattern Recognition, Joint IAPR International Workshop Abbreviated Journal
Volume 7626 Issue Pages 611-619
Keywords
Abstract In order to improve the results of automatically recognized handwritten text, information about the language is commonly included in the recognition process. A common approach is to represent a text line as a sequence. It is processed in one direction and the language information via n-grams is directly included in the decoding. This approach, however, only uses context on one side to estimate a word’s probability. Therefore, we propose a bidirectional recognition in this paper, using distinct forward and a backward language models. By combining decoding hypotheses from both directions, we achieve a significant increase in recognition accuracy for the off-line writer independent handwriting recognition task. Both language models are of the same type and can be estimated on the same corpus. Hence, the increase in recognition accuracy comes without any additional need for training data or language modeling complexity.
Address Japan
Corporate Author Thesis
Publisher Springer Berlin Heidelberg Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN 0302-9743 ISBN 978-3-642-34165-6 Medium
Area Expedition Conference SSPR&SPR
Notes DAG Approved no
Call Number Admin @ si @ FFL2012 Serial 2057
Permanent link to this record
 

 
Author (down) Vitaliy Konovalov; Albert Clapes; Sergio Escalera
Title Automatic Hand Detection in RGB-Depth Data Sequences Type Conference Article
Year 2013 Publication 16th Catalan Conference on Artificial Intelligence Abbreviated Journal
Volume Issue Pages 91-100
Keywords
Abstract Detecting hands in multi-modal RGB-Depth visual data has become a challenging Computer Vision problem with several applications of interest. This task involves dealing with changes in illumination, viewpoint variations, the articulated nature of the human body, the high flexibility of the wrist articulation, and the deformability of the hand itself. In this work, we propose an accurate and efficient automatic hand detection scheme to be applied in Human-Computer Interaction (HCI) applications in which the user is seated at the desk and, thus, only the upper body is visible. Our main hypothesis is that hand landmarks remain at a nearly constant geodesic distance from an automatically located anatomical reference point.
In a given frame, the human body is segmented first in the depth image. Then, a
graph representation of the body is built in which the geodesic paths are computed from the reference point. The dense optical flow vectors on the corresponding RGB image are used to reduce ambiguities of the geodesic paths’ connectivity, allowing to eliminate false edges interconnecting different body parts. Finally, we are able to detect the position of both hands based on invariant geodesic distances and optical flow within the body region, without involving costly learning procedures.
Address Vic; October 2013
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CCIA
Notes HuPBA;MILAB Approved no
Call Number Admin @ si @ KCE2013 Serial 2323
Permanent link to this record
 

 
Author (down) Vishwesh Pillai; Pranav Mehar; Manisha Das; Deep Gupta; Petia Radeva
Title Integrated Hierarchical and Flat Classifiers for Food Image Classification using Epistemic Uncertainty Type Conference Article
Year 2022 Publication IEEE International Conference on Signal Processing and Communications Abbreviated Journal
Volume Issue Pages
Keywords
Abstract The problem of food image recognition is an essential one in today’s context because health conditions such as diabetes, obesity, and heart disease require constant monitoring of a person’s diet. To automate this process, several models are available to recognize food images. Due to a considerable number of unique food dishes and various cuisines, a traditional flat classifier ceases to perform well. To address this issue, prediction schemes consisting of both flat and hierarchical classifiers, with the analysis of epistemic uncertainty are used to switch between the classifiers. However, the accuracy of the predictions made using epistemic uncertainty data remains considerably low. Therefore, this paper presents a prediction scheme using three different threshold criteria that helps to increase the accuracy of epistemic uncertainty predictions. The performance of the proposed method is demonstrated using several experiments performed on the MAFood-121 dataset. The experimental results validate the proposal performance and show that the proposed threshold criteria help to increase the overall accuracy of the predictions by correctly classifying the uncertainty distribution of the samples.
Address Bangalore; India; July 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference SPCOM
Notes MILAB; no menciona Approved no
Call Number Admin @ si @ PMD2022 Serial 3796
Permanent link to this record
 

 
Author (down) Vincenzo Lomonaco; Lorenzo Pellegrini; Andrea Cossu; Antonio Carta; Gabriele Graffieti; Tyler L. Hayes; Matthias De Lange; Marc Masana; Jary Pomponi; Gido van de Ven; Martin Mundt; Qi She; Keiland Cooper; Jeremy Forest; Eden Belouadah; Simone Calderara; German I. Parisi; Fabio Cuzzolin; Andreas Tolias; Simone Scardapane; Luca Antiga; Subutai Amhad; Adrian Popescu; Christopher Kanan; Joost Van de Weijer; Tinne Tuytelaars; Davide Bacciu; Davide Maltoni
Title Avalanche: an End-to-End Library for Continual Learning Type Conference Article
Year 2021 Publication 34th IEEE Conference on Computer Vision and Pattern Recognition Workshops Abbreviated Journal
Volume Issue Pages 3595-3605
Keywords
Abstract Learning continually from non-stationary data streams is a long-standing goal and a challenging problem in machine learning. Recently, we have witnessed a renewed and fast-growing interest in continual learning, especially within the deep learning community. However, algorithmic solutions are often difficult to re-implement, evaluate and port across different settings, where even results on standard benchmarks are hard to reproduce. In this work, we propose Avalanche, an open-source end-to-end library for continual learning research based on PyTorch. Avalanche is designed to provide a shared and collaborative codebase for fast prototyping, training, and reproducible evaluation of continual learning algorithms.
Address Virtual; June 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPRW
Notes LAMP; 600.120 Approved no
Call Number Admin @ si @ LPC2021 Serial 3567
Permanent link to this record
 

 
Author (down) Victoria Ruiz; Angel Sanchez; Jose F. Velez; Bogdan Raducanu
Title Automatic Image-Based Waste Classification Type Conference Article
Year 2019 Publication International Work-Conference on the Interplay Between Natural and Artificial Computation. From Bioinspired Systems and Biomedical Applications to Machine Learning Abbreviated Journal
Volume 11487 Issue Pages 422–431
Keywords Computer Vision; Deep learning; Convolutional neural networks; Waste classification
Abstract The management of solid waste in large urban environments has become a complex problem due to increasing amount of waste generated every day by citizens and companies. Current Computer Vision and Deep Learning techniques can help in the automatic detection and classification of waste types for further recycling tasks. In this work, we use the TrashNet dataset to train and compare different deep learning architectures for automatic classification of garbage types. In particular, several Convolutional Neural Networks (CNN) architectures were compared: VGG, Inception and ResNet. The best classification results were obtained using a combined Inception-ResNet model that achieved 88.6% of accuracy. These are the best results obtained with the considered dataset.
Address Almeria; June 2019
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference IWINAC
Notes LAMP; 600.120 Approved no
Call Number RSV2019 Serial 3273
Permanent link to this record
 

 
Author (down) Victor Vaquero; German Ros; Francesc Moreno-Noguer; Antonio Lopez; Alberto Sanfeliu
Title Joint coarse-and-fine reasoning for deep optical flow Type Conference Article
Year 2017 Publication 24th International Conference on Image Processing Abbreviated Journal
Volume Issue Pages 2558-2562
Keywords
Abstract We propose a novel representation for dense pixel-wise estimation tasks using CNNs that boosts accuracy and reduces training time, by explicitly exploiting joint coarse-and-fine reasoning. The coarse reasoning is performed over a discrete classification space to obtain a general rough solution, while the fine details of the solution are obtained over a continuous regression space. In our approach both components are jointly estimated, which proved to be beneficial for improving estimation accuracy. Additionally, we propose a new network architecture, which combines coarse and fine components by treating the fine estimation as a refinement built on top of the coarse solution, and therefore adding details to the general prediction. We apply our approach to the challenging problem of optical flow estimation and empirically validate it against state-of-the-art CNN-based solutions trained from scratch and tested on large optical flow datasets.
Address Beijing; China; September 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICIP
Notes ADAS; 600.118 Approved no
Call Number Admin @ si @ VRM2017 Serial 2898
Permanent link to this record
 

 
Author (down) Victor Ponce; Sergio Escalera; Xavier Baro
Title Multi-modal Social Signal Analysis for Predicting Agreement in Conversation Settings Type Conference Article
Year 2013 Publication 15th ACM International Conference on Multimodal Interaction Abbreviated Journal
Volume Issue Pages 495-502
Keywords
Abstract In this paper we present a non-invasive ambient intelligence framework for the analysis of non-verbal communication applied to conversational settings. In particular, we apply feature extraction techniques to multi-modal audio-RGB-depth data. We compute a set of behavioral indicators that define communicative cues coming from the fields of psychology and observational methodology. We test our methodology over data captured in victim-offender mediation scenarios. Using different state-of-the-art classification approaches, our system achieve upon 75% of recognition predicting agreement among the parts involved in the conversations, using as ground truth the experts opinions.
Address Sidney; Australia; December 2013
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-1-4503-2129-7 Medium
Area Expedition Conference ICMI
Notes HuPBA;MV Approved no
Call Number Admin @ si @ PEB2013 Serial 2488
Permanent link to this record
 

 
Author (down) Victor Ponce; Mario Gorga; Xavier Baro; Sergio Escalera
Title Human Behavior Analysis from Video Data Using Bag-of-Gestures Type Conference Article
Year 2011 Publication 22nd International Joint Conference on Artificial Intelligence Abbreviated Journal
Volume 3 Issue Pages 2836-2837
Keywords
Abstract Human Behavior Analysis in Uncontrolled Environments can be categorized in two main challenges: 1) Feature extraction and 2) Behavior analysis from a set of corporal language vocabulary. In this work, we present our achievements characterizing some simple behaviors from visual data on different real applications and discuss our plan for future work: low level vocabulary definition from bag-of-gesture units and high level modelling and inference of human behaviors.
Address Barcelona
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-1-57735-516-8 Medium
Area Expedition Conference IJCAI
Notes HuPBA;MV Approved no
Call Number Admin @ si @ PGB2011b Serial 1770
Permanent link to this record
 

 
Author (down) Victor Ponce; Hugo Jair Escalante; Sergio Escalera; Xavier Baro
Title Gesture and Action Recognition by Evolved Dynamic Subgestures Type Conference Article
Year 2015 Publication 26th British Machine Vision Conference Abbreviated Journal
Volume Issue Pages 129.1-129.13
Keywords
Abstract This paper introduces a framework for gesture and action recognition based on the evolution of temporal gesture primitives, or subgestures. Our work is inspired on the principle of producing genetic variations within a population of gesture subsequences, with the goal of obtaining a set of gesture units that enhance the generalization capability of standard gesture recognition approaches. In our context, gesture primitives are evolved over time using dynamic programming and generative models in order to recognize complex actions. In few generations, the proposed subgesture-based representation
of actions and gestures outperforms the state of the art results on the MSRDaily3D and MSRAction3D datasets.
Address Swansea; uk; September 2015
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference BMVC
Notes HuPBA;MV Approved no
Call Number Admin @ si @ PEE2015 Serial 2657
Permanent link to this record
 

 
Author (down) Victor Ponce; Baiyu Chen; Marc Oliu; Ciprian Corneanu; Albert Clapes; Isabelle Guyon; Xavier Baro; Hugo Jair Escalante; Sergio Escalera
Title ChaLearn LAP 2016: First Round Challenge on First Impressions – Dataset and Results Type Conference Article
Year 2016 Publication 14th European Conference on Computer Vision Workshops Abbreviated Journal
Volume Issue Pages
Keywords Behavior Analysis; Personality Traits; First Impressions
Abstract This paper summarizes the ChaLearn Looking at People 2016 First Impressions challenge data and results obtained by the teams in the rst round of the competition. The goal of the competition was to automatically evaluate ve \apparent“ personality traits (the so-called \Big Five”) from videos of subjects speaking in front of a camera, by using human judgment. In this edition of the ChaLearn challenge, a novel data set consisting of 10,000 shorts clips from YouTube videos has been made publicly available. The ground truth for personality traits was obtained from workers of Amazon Mechanical Turk (AMT). To alleviate calibration problems between workers, we used pairwise comparisons between videos, and variable levels were reconstructed by tting a Bradley-Terry-Luce model with maximum likelihood. The CodaLab open source
platform was used for submission of predictions and scoring. The competition attracted, over a period of 2 months, 84 participants who are grouped in several teams. Nine teams entered the nal phase. Despite the diculty of the task, the teams made great advances in this round of the challenge.
Address Amsterdam; The Netherlands; October 2016
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ECCVW
Notes HuPBA;MV; 600.063 Approved no
Call Number Admin @ si @ PCP2016 Serial 2828
Permanent link to this record
 

 
Author (down) Victor Campmany; Sergio Silva; Juan Carlos Moure; Toni Espinosa; David Vazquez; Antonio Lopez
Title GPU-based pedestrian detection for autonomous driving Type Conference Article
Year 2016 Publication GPU Technology Conference Abbreviated Journal
Volume Issue Pages
Keywords Pedestrian Detection; GPU
Abstract Pedestrian detection for autonomous driving is one of the hardest tasks within computer vision, and involves huge computational costs. Obtaining acceptable real-time performance, measured in frames per second (fps), for the most advanced algorithms is nowadays a hard challenge. Taking the work in [1] as our baseline, we propose a CUDA implementation of a pedestrian detection system that includes LBP and HOG as feature descriptors and SVM and Random forest as classifiers. We introduce significant algorithmic adjustments and optimizations to adapt the problem to the NVIDIA GPU architecture. The aim is to deploy a real-time system providing reliable results.
Address Silicon Valley; San Francisco; USA; April 2016
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference GTC
Notes ADAS; 600.085; 600.082; 600.076 Approved no
Call Number ADAS @ adas @ CSM2016 Serial 2737
Permanent link to this record
 

 
Author (down) Victor Campmany; Sergio Silva; Antonio Espinosa; Juan Carlos Moure; David Vazquez; Antonio Lopez
Title GPU-based pedestrian detection for autonomous driving Type Conference Article
Year 2016 Publication 16th International Conference on Computational Science Abbreviated Journal
Volume 80 Issue Pages 2377-2381
Keywords Pedestrian detection; Autonomous Driving; CUDA
Abstract We propose a real-time pedestrian detection system for the embedded Nvidia Tegra X1 GPU-CPU hybrid platform. The pipeline is composed by the following state-of-the-art algorithms: Histogram of Local Binary Patterns (LBP) and Histograms of Oriented Gradients (HOG) features extracted from the input image; Pyramidal Sliding Window technique for foreground segmentation; and Support Vector Machine (SVM) for classification. Results show a 8x speedup in the target Tegra X1 platform and a better performance/watt ratio than desktop CUDA platforms in study.
Address San Diego; CA; USA; June 2016
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICCS
Notes ADAS; 600.085; 600.082; 600.076 Approved no
Call Number ADAS @ adas @ CSE2016 Serial 2741
Permanent link to this record
 

 
Author (down) Victor Borjas; Jordi Vitria; Petia Radeva
Title Gradient Histogram Background Modeling for People Detection in Stationary Camera Environments Type Conference Article
Year 2013 Publication 13th IAPR Conference on Machine Vision Applications Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Best Poster AwardOne of the big challenges of today person detectors is the decreasing of the false positive rate. In this paper, we propose a novel framework to customize person detectors in static camera scenarios in order to reduce this rate. This scheme includes background modeling for subtraction based on gradient histograms and Mean-Shift clustering. Our experiments show that the detection improved compared to using only the output from the pedestrian detector reducing 87% of the false positives and therefore the overall precision of the detection
was increased signi cantly.
Address Kyoto; Japan; May 2013
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference MVA
Notes OR; MILAB;MV Approved no
Call Number BVR2013 Serial 2238
Permanent link to this record
 

 
Author (down) Veronica Romero; Emilio Granell; Alicia Fornes; Enrique Vidal; Joan Andreu Sanchez
Title Information Extraction in Handwritten Marriage Licenses Books Type Conference Article
Year 2019 Publication 5th International Workshop on Historical Document Imaging and Processing Abbreviated Journal
Volume Issue Pages 66-71
Keywords
Abstract Handwritten marriage licenses books are characterized by a simple structure of the text in the records with an evolutionary vocabulary, mainly composed of proper names that change along the time. This distinct vocabulary makes automatic transcription and semantic information extraction difficult tasks. Previous works have shown that the use of category-based language models and a Grammatical Inference technique known as MGGI can improve the accuracy of these
tasks. However, the application of the MGGI algorithm requires an a priori knowledge to label the words of the training strings, that is not always easy to obtain. In this paper we study how to automatically obtain the information required by the MGGI algorithm using a technique based on Confusion Networks. Using the resulting language model, full handwritten text recognition and information extraction experiments have been carried out with results supporting the proposed approach.
Address Sydney; Australia; September 2019
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference HIP
Notes DAG; 600.140; 600.121 Approved no
Call Number Admin @ si @ RGF2019 Serial 3352
Permanent link to this record
 

 
Author (down) Veronica Romero; Alicia Fornes; Enrique Vidal; Joan Andreu Sanchez
Title Information Extraction in Handwritten Marriage Licenses Books Using the MGGI Methodology Type Conference Article
Year 2017 Publication 8th Iberian Conference on Pattern Recognition and Image Analysis Abbreviated Journal
Volume 10255 Issue Pages 287-294
Keywords Handwritten Text Recognition; Information extraction; Language modeling; MGGI; Categories-based language model
Abstract Historical records of daily activities provide intriguing insights into the life of our ancestors, useful for demographic and genealogical research. For example, marriage license books have been used for centuries by ecclesiastical and secular institutions to register marriages. These books follow a simple structure of the text in the records with a evolutionary vocabulary, mainly composed of proper names that change along the time. This distinct vocabulary makes automatic transcription and semantic information extraction difficult tasks. In previous works we studied the use of category-based language models and how a Grammatical Inference technique known as MGGI could improve the accuracy of these tasks. In this work we analyze the main causes of the semantic errors observed in previous results and apply a better implementation of the MGGI technique to solve these problems. Using the resulting language model, transcription and information extraction experiments have been carried out, and the results support our proposed approach.
Address Faro; Portugal; June 2017
Corporate Author Thesis
Publisher Place of Publication Editor L.A. Alexandre; J.Salvador Sanchez; Joao M. F. Rodriguez
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN 978-3-319-58837-7 Medium
Area Expedition Conference IbPRIA
Notes DAG; 602.006; 600.097; 600.121 Approved no
Call Number Admin @ si @ RFV2017 Serial 2952
Permanent link to this record