|   | 
Details
   web
Records
Author (down) I. Sorodoc; S. Pezzelle; A. Herbelot; Mariella Dimiccoli; R. Bernardi
Title Learning quantification from images: A structured neural architecture Type Journal Article
Year 2018 Publication Natural Language Engineering Abbreviated Journal NLE
Volume 24 Issue 3 Pages 363-392
Keywords
Abstract Major advances have recently been made in merging language and vision representations. Most tasks considered so far have confined themselves to the processing of objects and lexicalised relations amongst objects (content words). We know, however, that humans (even pre-school children) can abstract over raw multimodal data to perform certain types of higher level reasoning, expressed in natural language by function words. A case in point is given by their ability to learn quantifiers, i.e. expressions like few, some and all. From formal semantics and cognitive linguistics, we know that quantifiers are relations over sets which, as a simplification, we can see as proportions. For instance, in most fish are red, most encodes the proportion of fish which are red fish. In this paper, we study how well current neural network strategies model such relations. We propose a task where, given an image and a query expressed by an object–property pair, the system must return a quantifier expressing which proportions of the queried object have the queried property. Our contributions are twofold. First, we show that the best performance on this task involves coupling state-of-the-art attention mechanisms with a network architecture mirroring the logical structure assigned to quantifiers by classic linguistic formalisation. Second, we introduce a new balanced dataset of image scenarios associated with quantification queries, which we hope will foster further research in this area.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MILAB; no menciona Approved no
Call Number Admin @ si @ SPH2018 Serial 3021
Permanent link to this record
 

 
Author (down) I. Payan
Title El uso del recalaje en la construccion de imagenes de superresolucion Type Report
Year 2001 Publication CVC Technical Report #50 Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address CVC (UAB)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Admin @ si @ Pay2001 Serial 201
Permanent link to this record
 

 
Author (down) I. King; Zhong Jin
Title Integrated Probability Function and Its Application to Content-Based Image Retrieval By Relevance Feedback Type Journal
Year 2003 Publication Pattern Recognition, 36(9): 2177–2186 (IF: 1.611) Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Admin @ si @ KiJ2003 Serial 427
Permanent link to this record
 

 
Author (down) Hunor Laczko; Meysam Madadi; Sergio Escalera; Jordi Gonzalez
Title A Generative Multi-Resolution Pyramid and Normal-Conditioning 3D Cloth Draping Type Conference Article
Year 2024 Publication Winter Conference on Applications of Computer Vision Abbreviated Journal
Volume Issue Pages 8709-8718
Keywords
Abstract RGB cloth generation has been deeply studied in the related literature, however, 3D garment generation remains an open problem. In this paper, we build a conditional variational autoencoder for 3D garment generation and draping. We propose a pyramid network to add garment details progressively in a canonical space, i.e. unposing and unshaping the garments w.r.t. the body. We study conditioning the network on surface normal UV maps, as an intermediate representation, which is an easier problem to optimize than 3D coordinates. Our results on two public datasets, CLOTH3D and CAPE, show that our model is robust, controllable in terms of detail generation by the use of multi-resolution pyramids, and achieves state-of-the-art results that can highly generalize to unseen garments, poses, and shapes even when training with small amounts of data.
Address Waikoloa; Hawai; USA; January 2024
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference WACV
Notes ISE; HUPBA Approved no
Call Number Admin @ si @ LME2024 Serial 3996
Permanent link to this record
 

 
Author (down) Hugo Prol; Vincent Dumoulin; Luis Herranz
Title Cross-Modulation Networks for Few-Shot Learning Type Miscellaneous
Year 2018 Publication Arxiv Abbreviated Journal
Volume Issue Pages
Keywords
Abstract A family of recent successful approaches to few-shot learning relies on learning an embedding space in which predictions are made by computing similarities between examples. This corresponds to combining information between support and query examples at a very late stage of the prediction pipeline. Inspired by this observation, we hypothesize that there may be benefits to combining the information at various levels of abstraction along the pipeline. We present an architecture called Cross-Modulation Networks which allows support and query examples to interact throughout the feature extraction process via a feature-wise modulation mechanism. We adapt the Matching Networks architecture to take advantage of these interactions and show encouraging initial results on miniImageNet in the 5-way, 1-shot setting, where we close the gap with state-of-the-art.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes LAMP; 600.120 Approved no
Call Number Admin @ si @ PDH2018 Serial 3248
Permanent link to this record
 

 
Author (down) Hugo Jair Escalante; Victor Ponce; Sergio Escalera; Xavier Baro; Alicia Morales-Reyes; Jose Martinez-Carranza
Title Evolving weighting schemes for the Bag of Visual Words Type Journal Article
Year 2017 Publication Neural Computing and Applications Abbreviated Journal Neural Computing and Applications
Volume 28 Issue 5 Pages 925–939
Keywords Bag of Visual Words; Bag of features; Genetic programming; Term-weighting schemes; Computer vision
Abstract The Bag of Visual Words (BoVW) is an established representation in computer vision. Taking inspiration from text mining, this representation has proved
to be very effective in many domains. However, in most cases, standard term-weighting schemes are adopted (e.g.,term-frequency or TF-IDF). It remains open the question of whether alternative weighting schemes could boost the
performance of methods based on BoVW. More importantly, it is unknown whether it is possible to automatically learn and determine effective weighting schemes from
scratch. This paper brings some light into both of these unknowns. On the one hand, we report an evaluation of the most common weighting schemes used in text mining, but rarely used in computer vision tasks. Besides, we propose an evolutionary algorithm capable of automatically learning weighting schemes for computer vision problems. We report empirical results of an extensive study in several computer vision problems. Results show the usefulness of the proposed method.
Address
Corporate Author Thesis
Publisher Place of Publication Editor Springer
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HUPBA;MV; no menciona Approved no
Call Number Admin @ si @ EPE2017 Serial 2743
Permanent link to this record
 

 
Author (down) Hugo Jair Escalante; Victor Ponce; Jun Wan; Michael A. Riegler; Baiyu Chen; Albert Clapes; Sergio Escalera; Isabelle Guyon; Xavier Baro; Pal Halvorsen; Henning Muller; Martha Larson
Title ChaLearn Joint Contest on Multimedia Challenges Beyond Visual Analysis: An Overview Type Conference Article
Year 2016 Publication 23rd International Conference on Pattern Recognition Abbreviated Journal
Volume Issue Pages
Keywords
Abstract This paper provides an overview of the Joint Contest on Multimedia Challenges Beyond Visual Analysis. We organized an academic competition that focused on four problems that require effective processing of multimodal information in order to be solved. Two tracks were devoted to gesture spotting and recognition from RGB-D video, two fundamental problems for human computer interaction. Another track was devoted to a second round of the first impressions challenge of which the goal was to develop methods to recognize personality traits from
short video clips. For this second round we adopted a novel collaborative-competitive (i.e., coopetition) setting. The fourth track was dedicated to the problem of video recommendation for improving user experience. The challenge was open for about 45 days, and received outstanding participation: almost
200 participants registered to the contest, and 20 teams sent predictions in the final stage. The main goals of the challenge were fulfilled: the state of the art was advanced considerably in the four tracks, with novel solutions to the proposed problems (mostly relying on deep learning). However, further research is still required. The data of the four tracks will be available to
allow researchers to keep making progress in the four tracks.
Address Cancun; Mexico; December 2016
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICPR
Notes HuPBA; 602.143;MV Approved no
Call Number Admin @ si @ EPW2016 Serial 2827
Permanent link to this record
 

 
Author (down) Hugo Jair Escalante; Sergio Escalera; Isabelle Guyon; Xavier Baro; Yagmur Gucluturk; Umut Guçlu; Marcel van Gerven
Title Explainable and Interpretable Models in Computer Vision and Machine Learning Type Book Whole
Year 2018 Publication The Springer Series on Challenges in Machine Learning Abbreviated Journal
Volume Issue Pages
Keywords
Abstract This book compiles leading research on the development of explainable and interpretable machine learning methods in the context of computer vision and machine learning.
Research progress in computer vision and pattern recognition has led to a variety of modeling techniques with almost human-like performance. Although these models have obtained astounding results, they are limited in their explainability and interpretability: what is the rationale behind the decision made? what in the model structure explains its functioning? Hence, while good performance is a critical required characteristic for learning machines, explainability and interpretability capabilities are needed to take learning machines to the next step to include them in decision support systems involving human supervision.
This book, written by leading international researchers, addresses key topics of explainability and interpretability, including the following:

·Evaluation and Generalization in Interpretable Machine Learning
·Explanation Methods in Deep Learning
·Learning Functional Causal Models with Generative Neural Networks
·Learning Interpreatable Rules for Multi-Label Classification
·Structuring Neural Networks for More Explainable Predictions
·Generating Post Hoc Rationales of Deep Visual Classification Decisions
·Ensembling Visual Explanations
·Explainable Deep Driving by Visualizing Causal Attention
·Interdisciplinary Perspective on Algorithmic Job Candidate Search
·Multimodal Personality Trait Analysis for Explainable Modeling of Job Interview Decisions
·Inherent Explainability Pattern Theory-based Video Event Interpretations
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HuPBA; no menciona Approved no
Call Number Admin @ si @ EEG2018 Serial 3399
Permanent link to this record
 

 
Author (down) Hugo Jair Escalante; Jose Martinez; Sergio Escalera; Victor Ponce; Xavier Baro
Title Improving Bag of Visual Words Representations with Genetic Programming Type Conference Article
Year 2015 Publication IEEE International Joint Conference on Neural Networks IJCNN2015 Abbreviated Journal
Volume Issue Pages
Keywords
Abstract The bag of visual words is a well established representation in diverse computer vision problems. Taking inspiration from the fields of text mining and retrieval, this representation has proved to be very effective in a large number of domains.
In most cases, a standard term-frequency weighting scheme is considered for representing images and videos in computer vision. This is somewhat surprising, as there are many alternative ways of generating bag of words representations within the text processing community. This paper explores the use of alternative weighting schemes for landmark tasks in computer vision: image
categorization and gesture recognition. We study the suitability of using well-known supervised and unsupervised weighting schemes for such tasks. More importantly, we devise a genetic program that learns new ways of representing images and videos under the bag of visual words representation. The proposed method learns to combine term-weighting primitives trying to maximize the classification performance. Experimental results are reported in standard image and video data sets showing the effectiveness of the proposed evolutionary algorithm.
Address Killarney; Ireland; July 2015
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference IJCNN
Notes HuPBA;MV Approved no
Call Number Admin @ si @ EME2015 Serial 2603
Permanent link to this record
 

 
Author (down) Hugo Jair Escalante; Isabelle Guyon; Sergio Escalera; Julio C. S. Jacques Junior; Xavier Baro; Evelyne Viegas; Yagmur Gucluturk; Umut Guclu; Marcel A. J. van Gerven; Rob van Lier; Meysam Madadi; Stephane Ayache
Title Design of an Explainable Machine Learning Challenge for Video Interviews Type Conference Article
Year 2017 Publication International Joint Conference on Neural Networks Abbreviated Journal
Volume Issue Pages
Keywords
Abstract This paper reviews and discusses research advances on “explainable machine learning” in computer vision. We focus on a particular area of the “Looking at People” (LAP) thematic domain: first impressions and personality analysis. Our aim is to make the computational intelligence and computer vision communities aware of the importance of developing explanatory mechanisms for computer-assisted decision making applications, such as automating recruitment. Judgments based on personality traits are being made routinely by human resource departments to evaluate the candidates' capacity of social insertion and their potential of career growth. However, inferring personality traits and, in general, the process by which we humans form a first impression of people, is highly subjective and may be biased. Previous studies have demonstrated that learning machines can learn to mimic human decisions. In this paper, we go one step further and formulate the problem of explaining the decisions of the models as a means of identifying what visual aspects are important, understanding how they relate to decisions suggested, and possibly gaining insight into undesirable negative biases. We design a new challenge on explainability of learning machines for first impressions analysis. We describe the setting, scenario, evaluation metrics and preliminary outcomes of the competition. To the best of our knowledge this is the first effort in terms of challenges for explainability in computer vision. In addition our challenge design comprises several other quantitative and qualitative elements of novelty, including a “coopetition” setting, which combines competition and collaboration.
Address Anchorage; Alaska; USA; May 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference IJCNN
Notes HUPBA; no proj Approved no
Call Number Admin @ si @ EGE2017 Serial 2922
Permanent link to this record
 

 
Author (down) Hugo Jair Escalante; Heysem Kaya; Albert Ali Salah; Sergio Escalera; Yagmur Gucluturk; Umut Guclu; Xavier Baro; Isabelle Guyon; Julio C. S. Jacques Junior; Meysam Madadi; Stephane Ayache; Evelyne Viegas; Furkan Gurpinar; Achmadnoer Sukma Wicaksana; Cynthia C. S. Liem; Marcel A. J. van Gerven; Rob van Lier
Title Explaining First Impressions: Modeling, Recognizing, and Explaining Apparent Personality from Videos Type Miscellaneous
Year 2018 Publication Arxiv Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Explainability and interpretability are two critical aspects of decision support systems. Within computer vision, they are critical in certain tasks related to human behavior analysis such as in health care applications. Despite their importance, it is only recently that researchers are starting to explore these aspects. This paper provides an introduction to explainability and interpretability in the context of computer vision with an emphasis on looking at people tasks. Specifically, we review and study those mechanisms in the context of first impressions analysis. To the best of our knowledge, this is the first effort in this direction. Additionally, we describe a challenge we organized on explainability in first impressions analysis from video. We analyze in detail the newly introduced data set, the evaluation protocol, and summarize the results of the challenge. Finally, derived from our study, we outline research opportunities that we foresee will be decisive in the near future for the development of the explainable computer vision field.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HUPBA Approved no
Call Number Admin @ si @ JKS2018 Serial 3095
Permanent link to this record
 

 
Author (down) Hugo Jair Escalante; Heysem Kaya; Albert Ali Salah; Sergio Escalera; Yagmur Gucluturk; Umut Guçlu; Xavier Baro; Isabelle Guyon; Julio C. S. Jacques Junior; Meysam Madadi; Stephane Ayache; Evelyne Viegas; Furkan Gurpinar; Achmadnoer Sukma Wicaksana; Cynthia Liem; Marcel A. J. Van Gerven; Rob Van Lier
Title Modeling, Recognizing, and Explaining Apparent Personality from Videos Type Journal Article
Year 2022 Publication IEEE Transactions on Affective Computing Abbreviated Journal TAC
Volume 13 Issue 2 Pages 894-911
Keywords
Abstract Explainability and interpretability are two critical aspects of decision support systems. Despite their importance, it is only recently that researchers are starting to explore these aspects. This paper provides an introduction to explainability and interpretability in the context of apparent personality recognition. To the best of our knowledge, this is the first effort in this direction. We describe a challenge we organized on explainability in first impressions analysis from video. We analyze in detail the newly introduced data set, evaluation protocol, proposed solutions and summarize the results of the challenge. We investigate the issue of bias in detail. Finally, derived from our study, we outline research opportunities that we foresee will be relevant in this area in the near future.
Address 1 April-June 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HuPBA; no menciona Approved no
Call Number Admin @ si @ EKS2022 Serial 3406
Permanent link to this record
 

 
Author (down) Hugo Bertiche; Niloy J Mitra; Kuldeep Kulkarni; Chun Hao Paul Huang; Tuanfeng Y Wang; Meysam Madadi; Sergio Escalera; Duygu Ceylan
Title Blowing in the Wind: CycleNet for Human Cinemagraphs from Still Images Type Conference Article
Year 2023 Publication 36th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal
Volume Issue Pages 459-468
Keywords
Abstract Cinemagraphs are short looping videos created by adding subtle motions to a static image. This kind of media is popular and engaging. However, automatic generation of cinemagraphs is an underexplored area and current solutions require tedious low-level manual authoring by artists. In this paper, we present an automatic method that allows generating human cinemagraphs from single RGB images. We investigate the problem in the context of dressed humans under the wind. At the core of our method is a novel cyclic neural network that produces looping cinemagraphs for the target loop duration. To circumvent the problem of collecting real data, we demonstrate that it is possible, by working in the image normal space, to learn garment motion dynamics on synthetic data and generalize to real data. We evaluate our method on both synthetic and real data and demonstrate that it is possible to create compelling and plausible cinemagraphs from single RGB images.
Address Vancouver; Canada; June 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPR
Notes HUPBA Approved no
Call Number Admin @ si @ BMK2023 Serial 3921
Permanent link to this record
 

 
Author (down) Hugo Bertiche; Meysam Madadi; Sergio Escalera
Title CLOTH3D: Clothed 3D Humans Type Conference Article
Year 2020 Publication 16th European Conference on Computer Vision Abbreviated Journal
Volume Issue Pages
Keywords
Abstract This work presents CLOTH3D, the first big scale synthetic dataset of 3D clothed human sequences. CLOTH3D contains a large variability on garment type, topology, shape, size, tightness and fabric. Clothes are simulated on top of thousands of different pose sequences and body shapes, generating realistic cloth dynamics. We provide the dataset with a generative model for cloth generation. We propose a Conditional Variational Auto-Encoder (CVAE) based on graph convolutions (GCVAE) to learn garment latent spaces. This allows for realistic generation of 3D garments on top of SMPL model for any pose and shape.
Address Virtual; August 2020
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ECCV
Notes HUPBA Approved no
Call Number Admin @ si @ BME2020 Serial 3519
Permanent link to this record
 

 
Author (down) Hugo Bertiche; Meysam Madadi; Sergio Escalera
Title Deep Parametric Surfaces for 3D Outfit Reconstruction from Single View Image Type Conference Article
Year 2021 Publication 16th IEEE International Conference on Automatic Face and Gesture Recognition Abbreviated Journal
Volume Issue Pages 1-8
Keywords
Abstract We present a methodology to retrieve analytical surfaces parametrized as a neural network. Previous works on 3D reconstruction yield point clouds, voxelized objects or meshes. Instead, our approach yields 2-manifolds in the euclidean space through deep learning. To this end, we implement a novel formulation for fully connected layers as parametrized manifolds that allows continuous predictions with differential geometry. Based on this property we propose a novel smoothness loss. Results on CLOTH3D++ dataset show the possibility to infer different topologies and the benefits of the smoothness term based on differential geometry.
Address Virtual; December 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference FG
Notes HUPBA; no proj Approved no
Call Number Admin @ si @ BME2021 Serial 3640
Permanent link to this record